Pairwise $\varepsilon$-Independence of the Sets $T^iA$ for a Mixing Transformation~$T$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 88-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

If an ergodic automorphism $T$ of a probability space is not partially rigid, then for any numbers $a\in(0,1)$ and $\varepsilon>0$ there exists a set $A$ such that all sets $T^i\!A$, $i>0$, are pairwise $\varepsilon$-independent.
Keywords: mixing, partial rigidity, measure-preserving transformation, $\varepsilon$-independence.
@article{FAA_2009_43_2_a9,
     author = {V. V. Ryzhikov},
     title = {Pairwise $\varepsilon${-Independence} of the {Sets} $T^iA$ for a {Mixing} {Transformation~}$T$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {88--91},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a9/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Pairwise $\varepsilon$-Independence of the Sets $T^iA$ for a Mixing Transformation~$T$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 88
EP  - 91
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a9/
LA  - ru
ID  - FAA_2009_43_2_a9
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Pairwise $\varepsilon$-Independence of the Sets $T^iA$ for a Mixing Transformation~$T$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 88-91
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a9/
%G ru
%F FAA_2009_43_2_a9
V. V. Ryzhikov. Pairwise $\varepsilon$-Independence of the Sets $T^iA$ for a Mixing Transformation~$T$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 88-91. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a9/

[1] S. V. Tikhonov, UMN, 62:1 (2007), 209–210 | DOI | MR | Zbl

[2] S. V. Tikhonov, Matem. sb., 198:4 (2007), 135–158 | DOI | MR | Zbl

[3] Ya. G. Sinai, Matem. sb., 63:1 (1964), 23–42 | MR

[4] A. B. Katok, Funkts. analiz i ego pril., 1:1 (1967), 75–85 | MR | Zbl

[5] S. Kalikow, Ergodic Theory Dynamic Systems, 4 (1984), 237–259 | DOI | MR | Zbl

[6] V. V. Ryzhikov, Matem. sb., 183:3 (1992), 133–160 | MR | Zbl