Pairwise $\varepsilon$-Independence of the Sets $T^iA$ for a Mixing Transformation~$T$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 88-91
Voir la notice de l'article provenant de la source Math-Net.Ru
If an ergodic automorphism $T$ of a probability space is not partially rigid, then for any numbers $a\in(0,1)$ and $\varepsilon>0$ there exists a set $A$ such that all sets $T^i\!A$, $i>0$, are pairwise $\varepsilon$-independent.
Keywords:
mixing, partial rigidity, measure-preserving transformation, $\varepsilon$-independence.
@article{FAA_2009_43_2_a9,
author = {V. V. Ryzhikov},
title = {Pairwise $\varepsilon${-Independence} of the {Sets} $T^iA$ for a {Mixing} {Transformation~}$T$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {88--91},
publisher = {mathdoc},
volume = {43},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a9/}
}
TY - JOUR AU - V. V. Ryzhikov TI - Pairwise $\varepsilon$-Independence of the Sets $T^iA$ for a Mixing Transformation~$T$ JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2009 SP - 88 EP - 91 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a9/ LA - ru ID - FAA_2009_43_2_a9 ER -
V. V. Ryzhikov. Pairwise $\varepsilon$-Independence of the Sets $T^iA$ for a Mixing Transformation~$T$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 88-91. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a9/