Pairwise $\varepsilon$-Independence of the Sets $T^iA$ for a Mixing Transformation $T$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 88-91
Cet article a éte moissonné depuis la source Math-Net.Ru
If an ergodic automorphism $T$ of a probability space is not partially rigid, then for any numbers $a\in(0,1)$ and $\varepsilon>0$ there exists a set $A$ such that all sets $T^i\!A$, $i>0$, are pairwise $\varepsilon$-independent.
Keywords:
mixing, partial rigidity, measure-preserving transformation, $\varepsilon$-independence.
@article{FAA_2009_43_2_a9,
author = {V. V. Ryzhikov},
title = {Pairwise $\varepsilon${-Independence} of the {Sets} $T^iA$ for a {Mixing} {Transformation~}$T$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {88--91},
year = {2009},
volume = {43},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a9/}
}
V. V. Ryzhikov. Pairwise $\varepsilon$-Independence of the Sets $T^iA$ for a Mixing Transformation $T$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 88-91. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a9/
[1] S. V. Tikhonov, UMN, 62:1 (2007), 209–210 | DOI | MR | Zbl
[2] S. V. Tikhonov, Matem. sb., 198:4 (2007), 135–158 | DOI | MR | Zbl
[3] Ya. G. Sinai, Matem. sb., 63:1 (1964), 23–42 | MR
[4] A. B. Katok, Funkts. analiz i ego pril., 1:1 (1967), 75–85 | MR | Zbl
[5] S. Kalikow, Ergodic Theory Dynamic Systems, 4 (1984), 237–259 | DOI | MR | Zbl
[6] V. V. Ryzhikov, Matem. sb., 183:3 (1992), 133–160 | MR | Zbl