A Realization Theorem in the Context of the Schur–Szegő Composition
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 79-83
Cet article a éte moissonné depuis la source Math-Net.Ru
Every real polynomial of degree $n$ in one variable with root $-1$ can be represented as the Schur–Szegő composition of $n-1$ polynomials of the form $(x+1)^{n-1}(x+a_i)$, where the numbers $a_i$ are uniquely determined up to permutation. Some $a_i$ are real, and the others form complex conjugate pairs. In this note, we show that for each pair $(\rho,r)$, where $0\le \rho,r\le [n/2]$, there exists a polynomial with exactly $\rho$ pairs of complex conjugate roots and exactly $r$ complex conjugate pairs in the corresponding set of numbers $a_i$.
Mots-clés :
polynomial
Keywords: Schur–Szegő composition.
Keywords: Schur–Szegő composition.
@article{FAA_2009_43_2_a7,
author = {V. P. Kostov},
title = {A {Realization} {Theorem} in the {Context} of the {Schur{\textendash}Szeg\H{o}} {Composition}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {79--83},
year = {2009},
volume = {43},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a7/}
}
V. P. Kostov. A Realization Theorem in the Context of the Schur–Szegő Composition. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 79-83. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a7/
[1] V. V. Prasolov, Mnogochleny, MTsNMO, M., 2003
[2] Q. I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, London Math. Soc. Monographs (N.S.), 26, Oxford Univ. Press, New York, NY, 2002 | MR | Zbl
[3] S. Alkhatib, V. P. Kostov, Revista Mat. Complut., 21:1 (2008), 191–206 | MR | Zbl
[4] V. P. Kostov, C. R. Acad. Sci. Paris Sér. I, 345:9 (2007), 483–488 | DOI | MR | Zbl
[5] V. P. Kostov, B. Z. Shapiro, C. R. Acad. Sci. Paris Sér. I, 343:2 (2006), 81–86 | DOI | MR | Zbl