Hyperbolic Chevalley Groups on $\mathbb{C}^2$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 64-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma\subset U(1,1)$ be the subgroup generated by the complex reflections. Suppose that $\Gamma$ acts discretely on the domain $K=\{(z_1,z_2)\in\mathbb{C}^2\mid |z_1|^2-|z_2|^20\}$ and that the projective group $P\Gamma$ acts on the unit disk $B=\{|z_1/z_2|1\}$ as a Fuchsian group of signature $(n_1,\dots,n_s)$, $s\ge 3$, $n_i\ge 2$. For such groups, we prove a Chevalley type theorem, i.e., find a necessary and sufficient condition for the quotient space $K/\Gamma$ to be isomorphic to $\mathbb{C}^2-\{0\}$.
Keywords: reflection group, Fuchsian group, Chevalley theorem.
Mots-clés : quotient space
@article{FAA_2009_43_2_a4,
     author = {O. V. Schwarzman},
     title = {Hyperbolic {Chevalley} {Groups} on $\mathbb{C}^2$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {64--72},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a4/}
}
TY  - JOUR
AU  - O. V. Schwarzman
TI  - Hyperbolic Chevalley Groups on $\mathbb{C}^2$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 64
EP  - 72
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a4/
LA  - ru
ID  - FAA_2009_43_2_a4
ER  - 
%0 Journal Article
%A O. V. Schwarzman
%T Hyperbolic Chevalley Groups on $\mathbb{C}^2$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 64-72
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a4/
%G ru
%F FAA_2009_43_2_a4
O. V. Schwarzman. Hyperbolic Chevalley Groups on $\mathbb{C}^2$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 64-72. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a4/

[1] E. B. Vinberg, “Giperbolicheskie gruppy otrazhenii”, UMN, 40:1 (1985), 29–66 | MR | Zbl

[2] I. V. Dolgachev, “Avtomorfnye formy i kvaziodnorodnye osobennosti”, Funkts. analiz i ego pril., 9:2 (1975), 67–68 | MR | Zbl

[3] A. Grotendik, O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961

[4] Kh. Tsishang, E. Fogt, Kh.-D. Koldevai, Poverkhnosti i razryvnye gruppy, Nauka, M., 1988 | MR

[5] O. V. Shvartsman, “O kotsiklakh grupp kompleksnykh otrazhenii i silnoi odnosvyaznosti faktorprostranstv”, Voprosy teorii grupp i gomologicheskoi algebry, Yaroslavskii gosudarstvennyi un-t, Yaroslavl, 1991, 32–39 | MR | Zbl

[6] O. V. Shvartsman, “O fuksovykh gruppakh roda nul”, Funkts. analiz i ego pril., 28:4 (1994), 66–73 | MR | Zbl

[7] O. V. Shvartsman, “Svobodnye algebry avtomorfnykh form na verkhnei poluploskosti”, Funkts. analiz i ego pril., 37:2 (2003), 81–89 | DOI | MR | Zbl

[8] C. Chevalley, “Invariants of finite groups generated by reflections”, Amer. J. Math., 77 (1955), 778–782 | DOI | MR | Zbl

[9] I. Dolgachev, “Invariant stable bundles over modular curves $X(p)$”, Contemp. Math., 224, Amer. Math. Soc., Providence, RI, 1999, 65–69 | DOI | MR

[10] J. Milnor, “On the $3$-dimensional Brieskorn manifolds $M(p,q,r)$”, Knots, Groups, and $3$-Manifolds, Ann. Math. Studies, 84, Princeton University Press, Princeton, NJ, 1975, 175–225 | MR

[11] H. Pinkham, “Normal surface singularities with $C^*$ action”, Math. Ann., 227:2 (1977), 183–193 | DOI | MR | Zbl

[12] G. Shephard, J. Todd, “Finite unitary reflection groups”, Canad. J. Math., 6 (1954), 274–304 | DOI | MR | Zbl