Hyperbolic Chevalley Groups on $\mathbb{C}^2$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 64-72

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma\subset U(1,1)$ be the subgroup generated by the complex reflections. Suppose that $\Gamma$ acts discretely on the domain $K=\{(z_1,z_2)\in\mathbb{C}^2\mid |z_1|^2-|z_2|^20\}$ and that the projective group $P\Gamma$ acts on the unit disk $B=\{|z_1/z_2|1\}$ as a Fuchsian group of signature $(n_1,\dots,n_s)$, $s\ge 3$, $n_i\ge 2$. For such groups, we prove a Chevalley type theorem, i.e., find a necessary and sufficient condition for the quotient space $K/\Gamma$ to be isomorphic to $\mathbb{C}^2-\{0\}$.
Keywords: reflection group, Fuchsian group, Chevalley theorem.
Mots-clés : quotient space
@article{FAA_2009_43_2_a4,
     author = {O. V. Schwarzman},
     title = {Hyperbolic {Chevalley} {Groups} on $\mathbb{C}^2$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {64--72},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a4/}
}
TY  - JOUR
AU  - O. V. Schwarzman
TI  - Hyperbolic Chevalley Groups on $\mathbb{C}^2$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 64
EP  - 72
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a4/
LA  - ru
ID  - FAA_2009_43_2_a4
ER  - 
%0 Journal Article
%A O. V. Schwarzman
%T Hyperbolic Chevalley Groups on $\mathbb{C}^2$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 64-72
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a4/
%G ru
%F FAA_2009_43_2_a4
O. V. Schwarzman. Hyperbolic Chevalley Groups on $\mathbb{C}^2$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 64-72. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a4/