Commutativity of the Centralizer of a Subalgebra in a~Universal Enveloping Algebra
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 47-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a reductive algebraic group over an algebraically closed field of characteristic zero, and let $\mathfrak{h}$ be an algebraic subalgebra of the tangent Lie algebra $\mathfrak{g}$ of $G$. We find all subalgebras $\mathfrak h$ that have no nontrivial characters and whose centralizers $\mathfrak{U}(\mathfrak{g})^\mathfrak{h}$ and $P(\mathfrak{g})^{\mathfrak{h}}$ in the universal enveloping algebra $\mathfrak{U}\mathfrak{g})$ and in the associated graded algebra $P(\mathfrak{g})$, respectively, are commutative. For all these subalgebras, we prove that ${\mathfrak U}\mathfrak{(g)}^{\mathfrak h}=\mathfrak{U(h)^h}\otimes\mathfrak{U(g)^g}$ and $P\mathfrak{(g)}^{\mathfrak h}=P\mathfrak{(h)^h}\otimes P\mathfrak{(g)^g}$. Furthermore, we obtain a criterion for the commutativity of $\mathfrak{U(g)^h}$ in terms of representation theory.
Keywords: universal enveloping algebra, centralizer of algebra
Mots-clés : Poisson algebra, coisotropic action.
@article{FAA_2009_43_2_a3,
     author = {A. A. Zorin},
     title = {Commutativity of the {Centralizer} of a {Subalgebra} in {a~Universal} {Enveloping} {Algebra}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {47--63},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a3/}
}
TY  - JOUR
AU  - A. A. Zorin
TI  - Commutativity of the Centralizer of a Subalgebra in a~Universal Enveloping Algebra
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 47
EP  - 63
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a3/
LA  - ru
ID  - FAA_2009_43_2_a3
ER  - 
%0 Journal Article
%A A. A. Zorin
%T Commutativity of the Centralizer of a Subalgebra in a~Universal Enveloping Algebra
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 47-63
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a3/
%G ru
%F FAA_2009_43_2_a3
A. A. Zorin. Commutativity of the Centralizer of a Subalgebra in a~Universal Enveloping Algebra. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 47-63. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a3/

[1] F. Knop, “Der Zentralisator einer Liealgebra in einer einhullenden Algebra”, J. Reine Angew. Math., 406 (1990), 5–9 | MR | Zbl

[2] Zh. Diksme, Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR

[3] E. B. Vinberg, “Kommutativnye odnorodnye prostranstva i koizotropnye simplekticheskie deistviya”, UMN, 56:1 (2001), 3–62 | DOI | MR | Zbl

[4] E. B. Vinberg, V. L. Popov, “Teoriya invariantov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 55, VINITI, M., 1989, 137–309 | MR

[5] D. I. Panyushev, “Inductive formulas for the index of seaweed Lie algebras”, Moscow Math. J., 1:2 (2001), 221–241 | DOI | MR | Zbl

[6] D. Luna, “Sur les orbites fermées des groupes algébriques reductifs”, Invent. Math., 16 (1972), 1–5 | DOI | MR | Zbl

[7] P. Tauvel, R. W. T. Yu, “Sur l'indice de certaines algèbres de Lie”, Ann. Inst. Fourier (Grenoble), 54:6 (2004), 1793–1810 | DOI | MR | Zbl

[8] A. G. Elashvili, “Indeks orosfericheskikh podalgebr poluprostykh algebr Li”, Trudy Tbilisskogo matem. in-ta, 77 (1985), 116–126 | MR | Zbl

[9] M. Rais, “L'indice des produits semi-directs $E\times_{\rho}\mathfrak g$”, C. R. Acad. Sci. Paris, Sér. A, 287:4 (1978), 195–197 | MR | Zbl

[10] E. M. Andreev, E. B. Vinberg, A. G. Elashvili, “Orbity naibolshei razmernosti poluprostykh lineinykh grupp Li”, Funkts. analiz i ego pril., 1:4 (1967), 3–7 | MR | Zbl

[11] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[12] D. Panyushev, “On the coadjoint representation of $\mathbb Z_2$-contractions of reductive algebras”, Adv. Math., 213:1 (2007), 380–404 | DOI | MR | Zbl

[13] D. Panyushev, A. Premet, O. Yakimova, “On symmetric invariants of centralisers in reductive Lie algebras”, J. Algebra, 313:1 (2007), 343–391 | DOI | MR | Zbl

[14] B. Kostant, “Lie group representations on polynomial ring”, Amer. J. Math., 85 (1963), 327–404 | DOI | MR | Zbl