Commutativity of the Centralizer of a Subalgebra in a~Universal Enveloping Algebra
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 47-63

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a reductive algebraic group over an algebraically closed field of characteristic zero, and let $\mathfrak{h}$ be an algebraic subalgebra of the tangent Lie algebra $\mathfrak{g}$ of $G$. We find all subalgebras $\mathfrak h$ that have no nontrivial characters and whose centralizers $\mathfrak{U}(\mathfrak{g})^\mathfrak{h}$ and $P(\mathfrak{g})^{\mathfrak{h}}$ in the universal enveloping algebra $\mathfrak{U}\mathfrak{g})$ and in the associated graded algebra $P(\mathfrak{g})$, respectively, are commutative. For all these subalgebras, we prove that ${\mathfrak U}\mathfrak{(g)}^{\mathfrak h}=\mathfrak{U(h)^h}\otimes\mathfrak{U(g)^g}$ and $P\mathfrak{(g)}^{\mathfrak h}=P\mathfrak{(h)^h}\otimes P\mathfrak{(g)^g}$. Furthermore, we obtain a criterion for the commutativity of $\mathfrak{U(g)^h}$ in terms of representation theory.
Keywords: universal enveloping algebra, centralizer of algebra
Mots-clés : Poisson algebra, coisotropic action.
@article{FAA_2009_43_2_a3,
     author = {A. A. Zorin},
     title = {Commutativity of the {Centralizer} of a {Subalgebra} in {a~Universal} {Enveloping} {Algebra}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {47--63},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a3/}
}
TY  - JOUR
AU  - A. A. Zorin
TI  - Commutativity of the Centralizer of a Subalgebra in a~Universal Enveloping Algebra
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 47
EP  - 63
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a3/
LA  - ru
ID  - FAA_2009_43_2_a3
ER  - 
%0 Journal Article
%A A. A. Zorin
%T Commutativity of the Centralizer of a Subalgebra in a~Universal Enveloping Algebra
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 47-63
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a3/
%G ru
%F FAA_2009_43_2_a3
A. A. Zorin. Commutativity of the Centralizer of a Subalgebra in a~Universal Enveloping Algebra. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 47-63. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a3/