On the Technique for Passing to the Limit in Nonlinear Elliptic Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 19-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of passing to the limit in a sequence of nonlinear elliptic problems. The “limit” equation is known in advance, but it has a nonclassical structure; namely, it contains the $p$-Laplacian with variable exponent $p=p(x)$. Such equations typically exhibit a special kind of nonuniqueness, known as the Lavrent'ev effect, and this is what makes passing to the limit nontrivial. Equations involving the $p(x)$-Laplacian occur in many problems of mathematical physics. Some applications are included in the present paper. In particular, we suggest an approach to the solvability analysis of a well-known coupled system in non-Newtonian hydrodynamics (“stationary thermo-rheological viscous flows”) without resorting to any smallness conditions.
Keywords: $p(x)$-Laplacian, compensated compactness, weak convergence of flows to a flow.
@article{FAA_2009_43_2_a1,
     author = {V. V. Zhikov},
     title = {On the {Technique} for {Passing} to the {Limit} in {Nonlinear} {Elliptic} {Equations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {19--38},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a1/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - On the Technique for Passing to the Limit in Nonlinear Elliptic Equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 19
EP  - 38
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a1/
LA  - ru
ID  - FAA_2009_43_2_a1
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T On the Technique for Passing to the Limit in Nonlinear Elliptic Equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 19-38
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a1/
%G ru
%F FAA_2009_43_2_a1
V. V. Zhikov. On the Technique for Passing to the Limit in Nonlinear Elliptic Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 19-38. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a1/

[1] D. Edmunds, J. Rákoshik, “Sobolev embeddings with variable exponent”, Studia Math., 143:3 (2000), 267–293 | DOI | MR | Zbl

[2] X. Fan, J. Shen, D. Zhao, “Sobolev embedding theorems for $W^{k,p(\cdot)}(\Omega)$”, J. Math. Anal. Appl., 262:2 (2001), 749–760 | DOI | MR | Zbl

[3] V. V. Zhikov, “Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR, ser. matem., 50:4 (1986), 675–710 | MR | Zbl

[4] V. V. Zhikov, “O perekhode k predelu v nelineinykh variatsionnykh zadachakh”, Matem. sb., 183:8 (1992), 47–84 | MR | Zbl

[5] V. V. Zhikov, “Ob effekte Lavrenteva”, Dokl. RAN, 345:1 (1995), 10–14 | MR | Zbl

[6] V. V. Zhikov, “O plotnosti gladkikh funktsii v prostranstve Soboleva–Orlicha”, Zap. nauchn. sem. POMI, 310, 2004, 67–81 | MR | Zbl

[7] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[8] L. Tartar, Homogénéisation, Cours Peccot au Collège de France, Paris, 1977

[9] F. Murat, “Compacité par compensation”, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. Fis. Mat., 5:3 (1978), 489–507 | MR | Zbl

[10] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[11] V. V. Zhikov, “K tekhnike predelnogo perekhoda v nelineinykh ellipticheskikh uravneniyakh”, Dokl. RAN, 420:3 (2008), 300–305 | MR | Zbl

[12] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962

[13] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[14] Yu. G. Reshetnyak, “Obschie teoremy o polunepreryvnosti i o skhodimosti s funktsionalom”, Sib. matem. zh., 8:5 (1967), 1051–1069 | Zbl

[15] V. V. Zhikov, “K probleme predelnogo perekhoda v divergentnykh neravnomerno ellipticheskikh uravneniyakh”, Funkts. analiz i ego pril., 35:1 (2001), 23–39 | DOI | MR | Zbl

[16] S. E. Pastukhova, “O vyrozhdennykh uravneniyakh monotonnogo tipa: effekt Lavrenteva i voprosy dostizhimosti”, Matem. sb., 198:10 (2007), 89–118 | DOI | MR | Zbl

[17] D. Kinderlerer, G. Stampakkya, Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983 | MR

[18] S. D. Howison, J. F. Rodrigues, M. Shillor, “Stationary solutions to the thermistor problem”, J. Math. Anal. Appl., 174:2 (1993), 573–588 | DOI | MR | Zbl

[19] J. Baranger, A. Mikelić, “Stationary solutions to a quasi-Newtonian flow with viscous heating”, Math. Models Methods Appl. Sci., 5:6 (1995), 725–738 | DOI | MR | Zbl

[20] V. V. Zhikov, “On some variational problems”, Russian J. Math. Phys., 5:1 (1997), 105–116 | MR | Zbl

[21] V. V. Zhikov, “Ob otsenkakh tipa Meiersa dlya reshenii nelineinogo uravneniya Stoksa”, Differentsialnye uravneniya, 33:1 (1997), 107–114 | MR | Zbl

[22] M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., 1748, Springer-Verlag, Berlin, 2000 | MR

[23] S. N. Antontsev, J. F. Rodrigues, “On stationary thermo-rheollogical viscous flows”, Ann. Univ. Ferrara, 52:1 (2006), 19–36 | DOI | MR | Zbl

[24] V. V. Zhikov, “Razreshimost nekotorykh par svyazannykh ellipticheskikh uravnenii”, Dokl. RAN, 418:4 (2008), 447–452 | MR | Zbl

[25] L. Boccardo, Th. Gallouet, “Nonlinear elliptic and parabolic equations involving measure data”, J. Funct. Anal., 87:1 (1989), 149–169 | DOI | MR | Zbl

[26] M. E. Bogovskii, “Reshenie pervoi kraevoi zadachi dlya uravneniya nerazryvnosti neszhimaemoi sredy”, Dokl. AN SSSR, 248:5 (1979), 1037–1040 | MR