Kruglov Operator and Operators Defined by Random Permutations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kruglov property and the Kruglov operator play an important role in the study of geometric properties of r. i. function spaces. We prove that the boundedness of the Kruglov operator in an r. i. space is equivalent to the uniform boundedness on this space of a sequence of operators defined by random permutations. It is also shown that there is no minimal r. i. space with the Kruglov property.
Keywords: rearrangement invariant (r. i.) space, Orlicz, Lorentz spaces, Kruglov property, Kruglov operator, independent functions.
Mots-clés : Marcinkiewicz
@article{FAA_2009_43_2_a0,
     author = {S. V. Astashkin and D. V. Zanin and E. M. Semenov and F. A. Sukochev},
     title = {Kruglov {Operator} and {Operators} {Defined} by {Random} {Permutations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - D. V. Zanin
AU  - E. M. Semenov
AU  - F. A. Sukochev
TI  - Kruglov Operator and Operators Defined by Random Permutations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 3
EP  - 18
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a0/
LA  - ru
ID  - FAA_2009_43_2_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A D. V. Zanin
%A E. M. Semenov
%A F. A. Sukochev
%T Kruglov Operator and Operators Defined by Random Permutations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 3-18
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a0/
%G ru
%F FAA_2009_43_2_a0
S. V. Astashkin; D. V. Zanin; E. M. Semenov; F. A. Sukochev. Kruglov Operator and Operators Defined by Random Permutations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 3-18. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a0/

[1] M. Sh. Braverman, Independent Random Variables and Rearrangement Invariant Spaces, London Math. Society Lecture Note Series, 194, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[2] V. M. Kruglov, “Zamechanie k teorii bezgranichno delimykh znakov”, Teoriya veroyatn. i primen., 15:2 (1970), 330–336 | MR | Zbl

[3] S. V. Astashkin, F. A. Sukochev, “Series of independent random variables in rearrangement invariant spaces: an operator approach”, Israel J. Math., 145 (2005), 125–156 | DOI | MR | Zbl

[4] S. V. Astashkin, F. A. Sukochev, “Sravnenie summ nezavisimykh i diz'yunktnykh funktsii v simmetrichnykh prostranstvakh”, Matem. zametki, 76:4 (2004), 483–489 | DOI | MR | Zbl

[5] W. Johnson, G. Schechtman, “Sums of independent random variables in rearrangement invariant function spaces”, Ann. Probab., 17:2 (1989), 789–808 | DOI | MR | Zbl

[6] S. Kwapień, C. Schütt, “Some combinatorial and probabilistic inequalities and their applications to Banach space theory”, Stud. Math., 82:1 (1985), 91–106 | DOI | MR

[7] E. M. Semenov, “Operatornye svoistva sluchainykh perestanovok”, Funkts. analiz i ego pril., 28:3 (1994), 82–85 | MR | Zbl

[8] S. Montgomery–Smith, E. M. Semenov, “Random rearrangements and operators”, Amer. Math. Soc. Transl. Ser. 2, 184, Amer. Math. Soc., Providence, RI, 1998, 157–183 | MR

[9] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II. Function spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1979 | MR | Zbl

[10] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[11] J. V. Ryff, “Orbits of $L_1$-functions under doubly stochastic transformations”, Trans. Amer. Math. Soc., 117 (1965), 92–100 | DOI | MR | Zbl

[12] G. G. Lorentz, “Relations between function spaces”, Proc. Amer. Math. Soc., 12 (1961), 127–132 | DOI | MR | Zbl

[13] M. Kholl, Kombinatorika, Mir, M., 1970 | MR

[14] A. A. Borovkov, Teoriya veroyatnostei, Nauka, M., 1976 | MR | Zbl