Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2009_43_2_a0, author = {S. V. Astashkin and D. V. Zanin and E. M. Semenov and F. A. Sukochev}, title = {Kruglov {Operator} and {Operators} {Defined} by {Random} {Permutations}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--18}, publisher = {mathdoc}, volume = {43}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a0/} }
TY - JOUR AU - S. V. Astashkin AU - D. V. Zanin AU - E. M. Semenov AU - F. A. Sukochev TI - Kruglov Operator and Operators Defined by Random Permutations JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2009 SP - 3 EP - 18 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a0/ LA - ru ID - FAA_2009_43_2_a0 ER -
%0 Journal Article %A S. V. Astashkin %A D. V. Zanin %A E. M. Semenov %A F. A. Sukochev %T Kruglov Operator and Operators Defined by Random Permutations %J Funkcionalʹnyj analiz i ego priloženiâ %D 2009 %P 3-18 %V 43 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a0/ %G ru %F FAA_2009_43_2_a0
S. V. Astashkin; D. V. Zanin; E. M. Semenov; F. A. Sukochev. Kruglov Operator and Operators Defined by Random Permutations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 3-18. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a0/
[1] M. Sh. Braverman, Independent Random Variables and Rearrangement Invariant Spaces, London Math. Society Lecture Note Series, 194, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[2] V. M. Kruglov, “Zamechanie k teorii bezgranichno delimykh znakov”, Teoriya veroyatn. i primen., 15:2 (1970), 330–336 | MR | Zbl
[3] S. V. Astashkin, F. A. Sukochev, “Series of independent random variables in rearrangement invariant spaces: an operator approach”, Israel J. Math., 145 (2005), 125–156 | DOI | MR | Zbl
[4] S. V. Astashkin, F. A. Sukochev, “Sravnenie summ nezavisimykh i diz'yunktnykh funktsii v simmetrichnykh prostranstvakh”, Matem. zametki, 76:4 (2004), 483–489 | DOI | MR | Zbl
[5] W. Johnson, G. Schechtman, “Sums of independent random variables in rearrangement invariant function spaces”, Ann. Probab., 17:2 (1989), 789–808 | DOI | MR | Zbl
[6] S. Kwapień, C. Schütt, “Some combinatorial and probabilistic inequalities and their applications to Banach space theory”, Stud. Math., 82:1 (1985), 91–106 | DOI | MR
[7] E. M. Semenov, “Operatornye svoistva sluchainykh perestanovok”, Funkts. analiz i ego pril., 28:3 (1994), 82–85 | MR | Zbl
[8] S. Montgomery–Smith, E. M. Semenov, “Random rearrangements and operators”, Amer. Math. Soc. Transl. Ser. 2, 184, Amer. Math. Soc., Providence, RI, 1998, 157–183 | MR
[9] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II. Function spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1979 | MR | Zbl
[10] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR
[11] J. V. Ryff, “Orbits of $L_1$-functions under doubly stochastic transformations”, Trans. Amer. Math. Soc., 117 (1965), 92–100 | DOI | MR | Zbl
[12] G. G. Lorentz, “Relations between function spaces”, Proc. Amer. Math. Soc., 12 (1961), 127–132 | DOI | MR | Zbl
[13] M. Kholl, Kombinatorika, Mir, M., 1970 | MR
[14] A. A. Borovkov, Teoriya veroyatnostei, Nauka, M., 1976 | MR | Zbl