On the Similarity of a $J$-Nonnegative Sturm--Liouville Operator to a Self-Adjoint Operator
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 81-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In terms of Weyl–Titchmarsh $m$-functions, we obtain a new necessary condition for an indefinite Sturm–Liouville operator to be similar to a self-adjoint operator. This condition is used to construct examples of $J$-nonnegative Sturm–Liouville operators with singular critical point zero.
Keywords: $J$-nonnegative operator, critical point, similarity to a self-adjoint operator.
@article{FAA_2009_43_1_a5,
     author = {I. M. Karabash and A. S. Kostenko},
     title = {On the {Similarity} of a $J${-Nonnegative} {Sturm--Liouville} {Operator} to a {Self-Adjoint} {Operator}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {81--84},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a5/}
}
TY  - JOUR
AU  - I. M. Karabash
AU  - A. S. Kostenko
TI  - On the Similarity of a $J$-Nonnegative Sturm--Liouville Operator to a Self-Adjoint Operator
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 81
EP  - 84
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a5/
LA  - ru
ID  - FAA_2009_43_1_a5
ER  - 
%0 Journal Article
%A I. M. Karabash
%A A. S. Kostenko
%T On the Similarity of a $J$-Nonnegative Sturm--Liouville Operator to a Self-Adjoint Operator
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 81-84
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a5/
%G ru
%F FAA_2009_43_1_a5
I. M. Karabash; A. S. Kostenko. On the Similarity of a $J$-Nonnegative Sturm--Liouville Operator to a Self-Adjoint Operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 81-84. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a5/

[1] R. Beals, J. Differential Equations, 56:3 (1985), 391–407 | DOI | MR | Zbl

[2] B. Ćurgus, H. Langer, J. Differential Equations, 79:1 (1989), 31–61 | DOI | MR | Zbl

[3] B. Ćurgus, B. Najman, Proc. Amer. Math. Soc., 123 (1995), 1125–1128 | DOI | MR | Zbl

[4] A. Fleige, B. Najman, Oper. Theory: Adv. Appl., 102, Birkhauser, Basel, 1998, 85–95 | MR | Zbl

[5] I. M. Karabash, Oper. Theory Adv. Appl., 188, Birkhäuser, Basel, 2009, 183–203 | MR

[6] I. M. Karabash, A. S. Kostenko, Proc. Roy. Soc. Edinburgh A, 138:4 (2008), 801–820 ; http://arxiv.org/abs/math/0612173 | DOI | MR | Zbl

[7] I. M. Karabash, M. M. Malamud, Oper. Matrices, 1:3 (2007), 301–368 | DOI | MR | Zbl

[8] H. Volkmer, Proc. Roy. Soc. Edinburg, A 126:5 (1996), 1097–1112 | DOI | MR | Zbl

[9] H. Langer, “Spectral Functions of Definitizable Operators in Krein Space”, Lect. Notes in Math., 948, 1982, 1–46 | DOI | MR | Zbl

[10] I. S. Kats, M. G. Krein, “dopolnenie I”, F. Atkinson, Diskretnye i nepreryvnye zadachi, Mir, M., 1968 | MR

[11] A. S. Kostenko, Matem. zametki, 80:1 (2006), 135–138 | DOI | MR | Zbl

[12] A. I. Parfenov, Sib. matem. zh., 44:4 (2003), 810–819 | MR | Zbl

[13] M. M. Faddeev, R. G. Shterenberg, Zap. nauch. semin. POMI, 270, 2000, 336–349 | MR | Zbl