On the Similarity of a $J$-Nonnegative Sturm--Liouville Operator to a Self-Adjoint Operator
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 81-84
Voir la notice de l'article provenant de la source Math-Net.Ru
In terms of Weyl–Titchmarsh $m$-functions, we obtain a new necessary condition for an indefinite Sturm–Liouville operator to be similar to a self-adjoint operator. This condition is used to construct examples of $J$-nonnegative Sturm–Liouville operators with singular critical point zero.
Keywords:
$J$-nonnegative operator, critical point, similarity to a self-adjoint operator.
@article{FAA_2009_43_1_a5,
author = {I. M. Karabash and A. S. Kostenko},
title = {On the {Similarity} of a $J${-Nonnegative} {Sturm--Liouville} {Operator} to a {Self-Adjoint} {Operator}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {81--84},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a5/}
}
TY - JOUR AU - I. M. Karabash AU - A. S. Kostenko TI - On the Similarity of a $J$-Nonnegative Sturm--Liouville Operator to a Self-Adjoint Operator JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2009 SP - 81 EP - 84 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a5/ LA - ru ID - FAA_2009_43_1_a5 ER -
%0 Journal Article %A I. M. Karabash %A A. S. Kostenko %T On the Similarity of a $J$-Nonnegative Sturm--Liouville Operator to a Self-Adjoint Operator %J Funkcionalʹnyj analiz i ego priloženiâ %D 2009 %P 81-84 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a5/ %G ru %F FAA_2009_43_1_a5
I. M. Karabash; A. S. Kostenko. On the Similarity of a $J$-Nonnegative Sturm--Liouville Operator to a Self-Adjoint Operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 81-84. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a5/