On the Similarity of a $J$-Nonnegative Sturm--Liouville Operator to a Self-Adjoint Operator
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 81-84

Voir la notice de l'article provenant de la source Math-Net.Ru

In terms of Weyl–Titchmarsh $m$-functions, we obtain a new necessary condition for an indefinite Sturm–Liouville operator to be similar to a self-adjoint operator. This condition is used to construct examples of $J$-nonnegative Sturm–Liouville operators with singular critical point zero.
Keywords: $J$-nonnegative operator, critical point, similarity to a self-adjoint operator.
@article{FAA_2009_43_1_a5,
     author = {I. M. Karabash and A. S. Kostenko},
     title = {On the {Similarity} of a $J${-Nonnegative} {Sturm--Liouville} {Operator} to a {Self-Adjoint} {Operator}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {81--84},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a5/}
}
TY  - JOUR
AU  - I. M. Karabash
AU  - A. S. Kostenko
TI  - On the Similarity of a $J$-Nonnegative Sturm--Liouville Operator to a Self-Adjoint Operator
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 81
EP  - 84
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a5/
LA  - ru
ID  - FAA_2009_43_1_a5
ER  - 
%0 Journal Article
%A I. M. Karabash
%A A. S. Kostenko
%T On the Similarity of a $J$-Nonnegative Sturm--Liouville Operator to a Self-Adjoint Operator
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 81-84
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a5/
%G ru
%F FAA_2009_43_1_a5
I. M. Karabash; A. S. Kostenko. On the Similarity of a $J$-Nonnegative Sturm--Liouville Operator to a Self-Adjoint Operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 81-84. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a5/