The Essential Spectrum of Boundary Value Problems for Systems of Differential Equations in a Bounded Domain with a~Cusp
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 55-67
Voir la notice de l'article provenant de la source Math-Net.Ru
Simple algebraic conditions are found for the existence of essential spectrum of the Neumann problem operator for a formally self-adjoint elliptic system of differential equations in a domain with a cuspidal singular point. The spectrum is discrete in the scalar case.
Keywords:
peak, self-adjoint system of differential equations with the polynomial property; essential, continuous, and discrete spectra.
Mots-clés : cusp
Mots-clés : cusp
@article{FAA_2009_43_1_a3,
author = {S. A. Nazarov},
title = {The {Essential} {Spectrum} of {Boundary} {Value} {Problems} for {Systems} of {Differential} {Equations} in a {Bounded} {Domain} with {a~Cusp}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {55--67},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a3/}
}
TY - JOUR AU - S. A. Nazarov TI - The Essential Spectrum of Boundary Value Problems for Systems of Differential Equations in a Bounded Domain with a~Cusp JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2009 SP - 55 EP - 67 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a3/ LA - ru ID - FAA_2009_43_1_a3 ER -
%0 Journal Article %A S. A. Nazarov %T The Essential Spectrum of Boundary Value Problems for Systems of Differential Equations in a Bounded Domain with a~Cusp %J Funkcionalʹnyj analiz i ego priloženiâ %D 2009 %P 55-67 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a3/ %G ru %F FAA_2009_43_1_a3
S. A. Nazarov. The Essential Spectrum of Boundary Value Problems for Systems of Differential Equations in a Bounded Domain with a~Cusp. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 55-67. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a3/