The Essential Spectrum of Boundary Value Problems for Systems of Differential Equations in a Bounded Domain with a~Cusp
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 55-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Simple algebraic conditions are found for the existence of essential spectrum of the Neumann problem operator for a formally self-adjoint elliptic system of differential equations in a domain with a cuspidal singular point. The spectrum is discrete in the scalar case.
Keywords: peak, self-adjoint system of differential equations with the polynomial property; essential, continuous, and discrete spectra.
Mots-clés : cusp
@article{FAA_2009_43_1_a3,
     author = {S. A. Nazarov},
     title = {The {Essential} {Spectrum} of {Boundary} {Value} {Problems} for {Systems} of {Differential} {Equations} in a {Bounded} {Domain} with {a~Cusp}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {55--67},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a3/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - The Essential Spectrum of Boundary Value Problems for Systems of Differential Equations in a Bounded Domain with a~Cusp
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 55
EP  - 67
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a3/
LA  - ru
ID  - FAA_2009_43_1_a3
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T The Essential Spectrum of Boundary Value Problems for Systems of Differential Equations in a Bounded Domain with a~Cusp
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 55-67
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a3/
%G ru
%F FAA_2009_43_1_a3
S. A. Nazarov. The Essential Spectrum of Boundary Value Problems for Systems of Differential Equations in a Bounded Domain with a~Cusp. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 55-67. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a3/

[1] V. G. Mazya, Prostranstva Soboleva, izd-vo Leningrad. un-ta, L., 1985 | MR

[2] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningrad. un-ta, L., 1980 | MR

[3] S. A. Nazarov, “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Problemy matematicheskogo analiza, 16, izd-vo SPbGU, SPb, 1997, 167–192 | MR

[4] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5 (1999), 77–142 | DOI | MR | Zbl

[5] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson-Academia, Paris–Prague, 1967 | MR

[6] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Amer. Math. Soc., Providence, 1997 | MR | Zbl

[7] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[8] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2001

[9] S. A. Nazarov, “O spektre zadachi teorii uprugosti dlya tela pikoobraznoi formy”, Sib. matem. zh., 49:5 (2008), 1105–1127 | MR

[10] S. A. Nazarov, “Vesovye neravenstva Korna na paraboloidalnykh oblastyakh”, Matem. zametki, 62:5 (1997), 751–765 ; Матем. заметки, 63:4 (1998), 640 | DOI | MR | Zbl | DOI

[11] V. Z. Parton, B. A. Kudryavtsev, Elektrouprugost pezoelektricheskikh i elektroprovodnykh tel, Nauka, M., 1988

[12] S. A. Nazarov, “Ravnomernye otsenki ostatkov v asimptoticheskikh razlozheniyakh reshenii zadachi o sobstvennykh kolebaniyakh pezoelektricheskoi plastiny”, Problemy matematicheskogo analiza, 25, Nauchnaya kniga, Novosibirsk, 2003, 99–188