Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2009_43_1_a3, author = {S. A. Nazarov}, title = {The {Essential} {Spectrum} of {Boundary} {Value} {Problems} for {Systems} of {Differential} {Equations} in a {Bounded} {Domain} with {a~Cusp}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {55--67}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a3/} }
TY - JOUR AU - S. A. Nazarov TI - The Essential Spectrum of Boundary Value Problems for Systems of Differential Equations in a Bounded Domain with a~Cusp JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2009 SP - 55 EP - 67 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a3/ LA - ru ID - FAA_2009_43_1_a3 ER -
%0 Journal Article %A S. A. Nazarov %T The Essential Spectrum of Boundary Value Problems for Systems of Differential Equations in a Bounded Domain with a~Cusp %J Funkcionalʹnyj analiz i ego priloženiâ %D 2009 %P 55-67 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a3/ %G ru %F FAA_2009_43_1_a3
S. A. Nazarov. The Essential Spectrum of Boundary Value Problems for Systems of Differential Equations in a Bounded Domain with a~Cusp. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 55-67. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a3/
[1] V. G. Mazya, Prostranstva Soboleva, izd-vo Leningrad. un-ta, L., 1985 | MR
[2] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningrad. un-ta, L., 1980 | MR
[3] S. A. Nazarov, “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Problemy matematicheskogo analiza, 16, izd-vo SPbGU, SPb, 1997, 167–192 | MR
[4] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5 (1999), 77–142 | DOI | MR | Zbl
[5] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson-Academia, Paris–Prague, 1967 | MR
[6] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Amer. Math. Soc., Providence, 1997 | MR | Zbl
[7] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[8] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2001
[9] S. A. Nazarov, “O spektre zadachi teorii uprugosti dlya tela pikoobraznoi formy”, Sib. matem. zh., 49:5 (2008), 1105–1127 | MR
[10] S. A. Nazarov, “Vesovye neravenstva Korna na paraboloidalnykh oblastyakh”, Matem. zametki, 62:5 (1997), 751–765 ; Матем. заметки, 63:4 (1998), 640 | DOI | MR | Zbl | DOI
[11] V. Z. Parton, B. A. Kudryavtsev, Elektrouprugost pezoelektricheskikh i elektroprovodnykh tel, Nauka, M., 1988
[12] S. A. Nazarov, “Ravnomernye otsenki ostatkov v asimptoticheskikh razlozheniyakh reshenii zadachi o sobstvennykh kolebaniyakh pezoelektricheskoi plastiny”, Problemy matematicheskogo analiza, 25, Nauchnaya kniga, Novosibirsk, 2003, 99–188