Horospherical Transform on Real Symmetric Varieties: Kernel and Cokernel
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 37-54

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we define a horospherical transform for a semisimple symmetric space $Y$. A natural double fibration is used to assign a more geometrical space $\Xi$ of horospheres to $Y$. The horospherical transform relates certain integrable analytic functions on $Y$ to analytic functions on $\Xi$ by fiber integration. We determine the kernel of the horospherical transform and establish that the transform is injective on functions belonging to the most continuous spectrum of $Y$.
Keywords: semisimple symmetric space, horospherical transform, Plancherel theorem.
Mots-clés : Fourier transform
@article{FAA_2009_43_1_a2,
     author = {B. Kr\"otz},
     title = {Horospherical {Transform} on {Real} {Symmetric} {Varieties:} {Kernel} and {Cokernel}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {37--54},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a2/}
}
TY  - JOUR
AU  - B. Krötz
TI  - Horospherical Transform on Real Symmetric Varieties: Kernel and Cokernel
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 37
EP  - 54
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a2/
LA  - ru
ID  - FAA_2009_43_1_a2
ER  - 
%0 Journal Article
%A B. Krötz
%T Horospherical Transform on Real Symmetric Varieties: Kernel and Cokernel
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 37-54
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a2/
%G ru
%F FAA_2009_43_1_a2
B. Krötz. Horospherical Transform on Real Symmetric Varieties: Kernel and Cokernel. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 37-54. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a2/