Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2009_43_1_a2, author = {B. Kr\"otz}, title = {Horospherical {Transform} on {Real} {Symmetric} {Varieties:} {Kernel} and {Cokernel}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {37--54}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a2/} }
B. Krötz. Horospherical Transform on Real Symmetric Varieties: Kernel and Cokernel. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 37-54. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a2/
[1] E. P. van den Ban, H. Schlichtkrull, “The most continuous part of the Plancherel decomposition for a reductive symmetric space”, Ann. of Math., 145:2 (1997), 267–364 | DOI | MR | Zbl
[2] E. P. van den Ban, H. Schlichtkrull, “Fourier inversion on a reductive symmetric space”, Acta Math., 182:1 (1999), 25–85 | DOI | MR | Zbl
[3] E. P. van den Ban, H. Schlichtkrull, “The Plancherel decomposition for a reductive symmetric space. II. Representation theory”, Invent. Math., 161:3 (2005), 567–628 | DOI | MR | Zbl
[4] I. N. Bernshtein, “Analiticheskoe prodolzhenie obobschennykh funktsii po parametru”, Funkts. analiz i ego pril., 6:4 (1972), 26–40 | MR | Zbl
[5] P. Delorme, “Formule de Plancherel pour les espaces symétriques réductifs”, Ann. of Math. (2), 147:2 (1998), 417–452 | DOI | MR | Zbl
[6] I. M. Gelfand, I. M. Graev, “Geometriya odnorodnykh prostranstv, predstavleniya grupp v odnorodnykh prostranstvakh i svyazannye s nimi voprosy integralnoi geometrii”, Trudy MMO, 8, 1959, 321–390
[7] S. Gindikin, B. Krötz, G. Ólafsson, “Holomorphic $H$-spherical distribution vectors in principal series representations”, Invent. Math., 158:3 (2004), 643–682 | DOI | MR | Zbl
[8] S. Gindikin, B. Krötz, G. Ólafsson, “Holomorphic horospherical transform on non-compactly causal spaces”, Int. Math. Res. Not., 2006, Art. ID 76857, 47 pp. | MR
[9] S. Gindikin, B. Krötz, G. Ólafsson, “Horospherical model for holomorphic discrete series and horospherical Cauchy transform”, Compos. Math., 142:4 (2006), 983–1008 | DOI | MR | Zbl
[10] A. Knapp, Lie Groups beyond an Introduction, 2nd edition, Birkhäuser, Boston, MA, 2002 | MR | Zbl
[11] B. Krötz, H. Schlichtkrull, On function spaces on symmetric spaces, http://arxiv.org/abs/0711.1087 | MR
[12] T. Matsuki, “The orbits of affine symmetric spaces under the action of minimal parabolic subgroups”, J. Math. Soc. Japan, 31:2 (1979), 331–357 | DOI | MR | Zbl
[13] H. Schlichtkrull, Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Progress in Math., 49, Birkhäuser, Boston, MA, 1984 | MR | Zbl
[14] N. Wallach, Real Reductive Groups I, Academic Press, Boston, MA, 1988 | MR | Zbl