Horospherical Transform on Real Symmetric Varieties: Kernel and Cokernel
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 37-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we define a horospherical transform for a semisimple symmetric space $Y$. A natural double fibration is used to assign a more geometrical space $\Xi$ of horospheres to $Y$. The horospherical transform relates certain integrable analytic functions on $Y$ to analytic functions on $\Xi$ by fiber integration. We determine the kernel of the horospherical transform and establish that the transform is injective on functions belonging to the most continuous spectrum of $Y$.
Keywords: semisimple symmetric space, horospherical transform, Plancherel theorem.
Mots-clés : Fourier transform
@article{FAA_2009_43_1_a2,
     author = {B. Kr\"otz},
     title = {Horospherical {Transform} on {Real} {Symmetric} {Varieties:} {Kernel} and {Cokernel}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {37--54},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a2/}
}
TY  - JOUR
AU  - B. Krötz
TI  - Horospherical Transform on Real Symmetric Varieties: Kernel and Cokernel
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 37
EP  - 54
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a2/
LA  - ru
ID  - FAA_2009_43_1_a2
ER  - 
%0 Journal Article
%A B. Krötz
%T Horospherical Transform on Real Symmetric Varieties: Kernel and Cokernel
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 37-54
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a2/
%G ru
%F FAA_2009_43_1_a2
B. Krötz. Horospherical Transform on Real Symmetric Varieties: Kernel and Cokernel. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 37-54. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a2/

[1] E. P. van den Ban, H. Schlichtkrull, “The most continuous part of the Plancherel decomposition for a reductive symmetric space”, Ann. of Math., 145:2 (1997), 267–364 | DOI | MR | Zbl

[2] E. P. van den Ban, H. Schlichtkrull, “Fourier inversion on a reductive symmetric space”, Acta Math., 182:1 (1999), 25–85 | DOI | MR | Zbl

[3] E. P. van den Ban, H. Schlichtkrull, “The Plancherel decomposition for a reductive symmetric space. II. Representation theory”, Invent. Math., 161:3 (2005), 567–628 | DOI | MR | Zbl

[4] I. N. Bernshtein, “Analiticheskoe prodolzhenie obobschennykh funktsii po parametru”, Funkts. analiz i ego pril., 6:4 (1972), 26–40 | MR | Zbl

[5] P. Delorme, “Formule de Plancherel pour les espaces symétriques réductifs”, Ann. of Math. (2), 147:2 (1998), 417–452 | DOI | MR | Zbl

[6] I. M. Gelfand, I. M. Graev, “Geometriya odnorodnykh prostranstv, predstavleniya grupp v odnorodnykh prostranstvakh i svyazannye s nimi voprosy integralnoi geometrii”, Trudy MMO, 8, 1959, 321–390

[7] S. Gindikin, B. Krötz, G. Ólafsson, “Holomorphic $H$-spherical distribution vectors in principal series representations”, Invent. Math., 158:3 (2004), 643–682 | DOI | MR | Zbl

[8] S. Gindikin, B. Krötz, G. Ólafsson, “Holomorphic horospherical transform on non-compactly causal spaces”, Int. Math. Res. Not., 2006, Art. ID 76857, 47 pp. | MR

[9] S. Gindikin, B. Krötz, G. Ólafsson, “Horospherical model for holomorphic discrete series and horospherical Cauchy transform”, Compos. Math., 142:4 (2006), 983–1008 | DOI | MR | Zbl

[10] A. Knapp, Lie Groups beyond an Introduction, 2nd edition, Birkhäuser, Boston, MA, 2002 | MR | Zbl

[11] B. Krötz, H. Schlichtkrull, On function spaces on symmetric spaces, http://arxiv.org/abs/0711.1087 | MR

[12] T. Matsuki, “The orbits of affine symmetric spaces under the action of minimal parabolic subgroups”, J. Math. Soc. Japan, 31:2 (1979), 331–357 | DOI | MR | Zbl

[13] H. Schlichtkrull, Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Progress in Math., 49, Birkhäuser, Boston, MA, 1984 | MR | Zbl

[14] N. Wallach, Real Reductive Groups I, Academic Press, Boston, MA, 1988 | MR | Zbl