Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2009_43_1_a1, author = {U. Bruzzo and L. Cirio and P. Rossi and V. N. Rubtsov}, title = {Equivariant {Cohomology} and {Localization} for {Lie} {Algebroids}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {22--36}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a1/} }
TY - JOUR AU - U. Bruzzo AU - L. Cirio AU - P. Rossi AU - V. N. Rubtsov TI - Equivariant Cohomology and Localization for Lie Algebroids JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2009 SP - 22 EP - 36 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a1/ LA - ru ID - FAA_2009_43_1_a1 ER -
U. Bruzzo; L. Cirio; P. Rossi; V. N. Rubtsov. Equivariant Cohomology and Localization for Lie Algebroids. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 22-36. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a1/
[1] P. F. Baum, R. Bott, “On the zeroes of meromorphic vector fields”, Essays in Topology and Related Topics. Memoires dédiés à Georges de Rham, Springer-Verlag, New York, 1970, 29–47 | DOI | MR
[2] N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Grundlehren der Mathematischen Wissenschaften, 298, Springer-Verlag, Berlin, 1992 | MR
[3] R. Bott, “Vector fields and characteristic numbers”, Michigan Math. J., 14 (1967), 231–244 | DOI | MR | Zbl
[4] U. Bruzzo, F. Fucito, J. F. Morales, A. Tanzini, “Multi-instanton calculus and equivariant cohomology”, J. High Energy Physics, 2003:5 (2003), 54–76 (electronic) | DOI | MR
[5] U. Bruzzo, V. Rubtsov, Holomorphic Atiyah algebroids and localization (to appear)
[6] H. Bursztyn, G. R. Cavalcanti, M. Gualtieri, “Reduction of Courant algebroids and generalized complex structures”, Adv. Math., 211:2 (2007), 726–765 | DOI | MR | Zbl
[7] J. B. Carrell, “A remark on the Grothendieck residue map”, Proc. Amer. Math. Soc., 70:1 (1978), 43–48 | DOI | MR | Zbl
[8] J. B. Carrell, D. I. Lieberman, “Vector fields and Chern numbers”, Math. Ann., 225:3 (1977), 263–273 | DOI | MR | Zbl
[9] B. Cenkl, “Zeros of vector fields and characteristic numbers”, J. Diff. Geom., 8 (1973), 25–46 | MR | Zbl
[10] S.-S. Chern,, “Meromorphic vector fields and characteristic numbers”, Scripta Math., 29:3–4 (1973), 243–251 | MR | Zbl
[11] S. Evens, J.-H. Lu, A. Weinstein, “Transverse measures, the modular class and a cohomology pairing for Lie algebroids”, Quart. J. Math. Oxford, Ser. 2, 50 (1999), 417–436 | DOI | MR | Zbl
[12] V. L. Ginzburg, “Equivariant Poisson cohomology and a spectral sequence associated with a moment map”, Internat. J. Math., 10 (1999), 977–1010 | DOI | MR | Zbl
[13] S. Hu, B. Uribe, Extended manifolds and extended equivariant cohomology, http://arxiv.org/abs/math/0608319
[14] Y. Kosmann-Schwarzbach, “Vector fields and generalized vector fields on fibered manifolds”, Geometry and Differential Geometry (Proc. Conf. Univ. Haifa, Israel, 1979), Lecture Notes in Math., 792, Springer-Verlag, Berlin, 1980, 307–355 | DOI | MR
[15] J. Kubarski, “Bott's vanishing theorem for regular Lie algebroids”, Trans. Amer. Math. Soc., 348:6 (1996), 2151–2167 | DOI | MR | Zbl
[16] K. Liu, “Holomorphic equivariant cohomology”, Math. Ann., 303:1 (1995), 125–148 | DOI | MR | Zbl
[17] R. Loja Fernandes, “Lie algebroids, holonomy and characteristic classes”, Adv. Math., 170:1 (2002), 119–179 | DOI | MR | Zbl
[18] K. C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, London Math. Soc. Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[19] N. A. Nekrasov, “Seiberg–Witten potential from instanton counting”, Adv. Theor. Math. Phys., 7:5 (2003), 831–864 | DOI | MR | Zbl
[20] Y. Nitta, “Reduction of generalized Calabi–Yau structures”, J. Math. Soc. Japan, 59:4 (2007), 1179–1198 | DOI | MR | Zbl
[21] Y. Nitta, Duistermaat-Heckman formula for a torus action on a generalized Calabi–Yau manifold and localization formula, http://arxiv.org/abs/math/0702264v1
[22] V. Rubtsov, “Topologicheskie invarianty ellipticheskikh kompleksov Spensera uravnenii Li”, Izvestiya VUZov, Matematika, 1992, no. 5, 74–92 | MR | Zbl
[23] T. Strobl, “Algebroid Yang–Mills theory”, Phys. Rev. Lett., 93:21 (2004), 211601 | DOI | MR
[24] A. Yu. Vaintrob, “Algebroidy Li i gomologicheskie vektornye polya”, UMN, 52:2 (1997), 161–162 | DOI | MR | Zbl
[25] I. Vaisman, “Remarks on the Lichnerowicz–Poisson cohomology”, Ann. Inst. Fourier (Grenoble), 40:4 (1990), 951–963 | DOI | MR | Zbl