Equivariant Cohomology and Localization for Lie Algebroids
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 22-36
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $M$ be a manifold carrying the action of a Lie group $G$, and let $A$ be a Lie algebroid on $M$ equipped with a compatible infinitesimal $G$-action. Using these data, we construct an equivariant cohomology of $A$ and prove a related localization formula for the case of compact $G$. By way of application, we prove an analog of the Bott formula.
Mots-clés :
Lie algebroid
Keywords: equivariant cohomology, localization formula.
Keywords: equivariant cohomology, localization formula.
@article{FAA_2009_43_1_a1,
author = {U. Bruzzo and L. Cirio and P. Rossi and V. N. Rubtsov},
title = {Equivariant {Cohomology} and {Localization} for {Lie} {Algebroids}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {22--36},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a1/}
}
TY - JOUR AU - U. Bruzzo AU - L. Cirio AU - P. Rossi AU - V. N. Rubtsov TI - Equivariant Cohomology and Localization for Lie Algebroids JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2009 SP - 22 EP - 36 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a1/ LA - ru ID - FAA_2009_43_1_a1 ER -
U. Bruzzo; L. Cirio; P. Rossi; V. N. Rubtsov. Equivariant Cohomology and Localization for Lie Algebroids. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 22-36. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a1/