Equivariant Cohomology and Localization for Lie Algebroids
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 22-36

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a manifold carrying the action of a Lie group $G$, and let $A$ be a Lie algebroid on $M$ equipped with a compatible infinitesimal $G$-action. Using these data, we construct an equivariant cohomology of $A$ and prove a related localization formula for the case of compact $G$. By way of application, we prove an analog of the Bott formula.
Mots-clés : Lie algebroid
Keywords: equivariant cohomology, localization formula.
@article{FAA_2009_43_1_a1,
     author = {U. Bruzzo and L. Cirio and P. Rossi and V. N. Rubtsov},
     title = {Equivariant {Cohomology} and {Localization} for {Lie} {Algebroids}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {22--36},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a1/}
}
TY  - JOUR
AU  - U. Bruzzo
AU  - L. Cirio
AU  - P. Rossi
AU  - V. N. Rubtsov
TI  - Equivariant Cohomology and Localization for Lie Algebroids
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 22
EP  - 36
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a1/
LA  - ru
ID  - FAA_2009_43_1_a1
ER  - 
%0 Journal Article
%A U. Bruzzo
%A L. Cirio
%A P. Rossi
%A V. N. Rubtsov
%T Equivariant Cohomology and Localization for Lie Algebroids
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 22-36
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a1/
%G ru
%F FAA_2009_43_1_a1
U. Bruzzo; L. Cirio; P. Rossi; V. N. Rubtsov. Equivariant Cohomology and Localization for Lie Algebroids. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 22-36. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a1/