Equivariant Cohomology and Localization for Lie Algebroids
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 22-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a manifold carrying the action of a Lie group $G$, and let $A$ be a Lie algebroid on $M$ equipped with a compatible infinitesimal $G$-action. Using these data, we construct an equivariant cohomology of $A$ and prove a related localization formula for the case of compact $G$. By way of application, we prove an analog of the Bott formula.
Mots-clés : Lie algebroid
Keywords: equivariant cohomology, localization formula.
@article{FAA_2009_43_1_a1,
     author = {U. Bruzzo and L. Cirio and P. Rossi and V. N. Rubtsov},
     title = {Equivariant {Cohomology} and {Localization} for {Lie} {Algebroids}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {22--36},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a1/}
}
TY  - JOUR
AU  - U. Bruzzo
AU  - L. Cirio
AU  - P. Rossi
AU  - V. N. Rubtsov
TI  - Equivariant Cohomology and Localization for Lie Algebroids
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 22
EP  - 36
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a1/
LA  - ru
ID  - FAA_2009_43_1_a1
ER  - 
%0 Journal Article
%A U. Bruzzo
%A L. Cirio
%A P. Rossi
%A V. N. Rubtsov
%T Equivariant Cohomology and Localization for Lie Algebroids
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 22-36
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a1/
%G ru
%F FAA_2009_43_1_a1
U. Bruzzo; L. Cirio; P. Rossi; V. N. Rubtsov. Equivariant Cohomology and Localization for Lie Algebroids. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 22-36. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a1/

[1] P. F. Baum, R. Bott, “On the zeroes of meromorphic vector fields”, Essays in Topology and Related Topics. Memoires dédiés à Georges de Rham, Springer-Verlag, New York, 1970, 29–47 | DOI | MR

[2] N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Grundlehren der Mathematischen Wissenschaften, 298, Springer-Verlag, Berlin, 1992 | MR

[3] R. Bott, “Vector fields and characteristic numbers”, Michigan Math. J., 14 (1967), 231–244 | DOI | MR | Zbl

[4] U. Bruzzo, F. Fucito, J. F. Morales, A. Tanzini, “Multi-instanton calculus and equivariant cohomology”, J. High Energy Physics, 2003:5 (2003), 54–76 (electronic) | DOI | MR

[5] U. Bruzzo, V. Rubtsov, Holomorphic Atiyah algebroids and localization (to appear)

[6] H. Bursztyn, G. R. Cavalcanti, M. Gualtieri, “Reduction of Courant algebroids and generalized complex structures”, Adv. Math., 211:2 (2007), 726–765 | DOI | MR | Zbl

[7] J. B. Carrell, “A remark on the Grothendieck residue map”, Proc. Amer. Math. Soc., 70:1 (1978), 43–48 | DOI | MR | Zbl

[8] J. B. Carrell, D. I. Lieberman, “Vector fields and Chern numbers”, Math. Ann., 225:3 (1977), 263–273 | DOI | MR | Zbl

[9] B. Cenkl, “Zeros of vector fields and characteristic numbers”, J. Diff. Geom., 8 (1973), 25–46 | MR | Zbl

[10] S.-S. Chern,, “Meromorphic vector fields and characteristic numbers”, Scripta Math., 29:3–4 (1973), 243–251 | MR | Zbl

[11] S. Evens, J.-H. Lu, A. Weinstein, “Transverse measures, the modular class and a cohomology pairing for Lie algebroids”, Quart. J. Math. Oxford, Ser. 2, 50 (1999), 417–436 | DOI | MR | Zbl

[12] V. L. Ginzburg, “Equivariant Poisson cohomology and a spectral sequence associated with a moment map”, Internat. J. Math., 10 (1999), 977–1010 | DOI | MR | Zbl

[13] S. Hu, B. Uribe, Extended manifolds and extended equivariant cohomology, http://arxiv.org/abs/math/0608319

[14] Y. Kosmann-Schwarzbach, “Vector fields and generalized vector fields on fibered manifolds”, Geometry and Differential Geometry (Proc. Conf. Univ. Haifa, Israel, 1979), Lecture Notes in Math., 792, Springer-Verlag, Berlin, 1980, 307–355 | DOI | MR

[15] J. Kubarski, “Bott's vanishing theorem for regular Lie algebroids”, Trans. Amer. Math. Soc., 348:6 (1996), 2151–2167 | DOI | MR | Zbl

[16] K. Liu, “Holomorphic equivariant cohomology”, Math. Ann., 303:1 (1995), 125–148 | DOI | MR | Zbl

[17] R. Loja Fernandes, “Lie algebroids, holonomy and characteristic classes”, Adv. Math., 170:1 (2002), 119–179 | DOI | MR | Zbl

[18] K. C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, London Math. Soc. Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[19] N. A. Nekrasov, “Seiberg–Witten potential from instanton counting”, Adv. Theor. Math. Phys., 7:5 (2003), 831–864 | DOI | MR | Zbl

[20] Y. Nitta, “Reduction of generalized Calabi–Yau structures”, J. Math. Soc. Japan, 59:4 (2007), 1179–1198 | DOI | MR | Zbl

[21] Y. Nitta, Duistermaat-Heckman formula for a torus action on a generalized Calabi–Yau manifold and localization formula, http://arxiv.org/abs/math/0702264v1

[22] V. Rubtsov, “Topologicheskie invarianty ellipticheskikh kompleksov Spensera uravnenii Li”, Izvestiya VUZov, Matematika, 1992, no. 5, 74–92 | MR | Zbl

[23] T. Strobl, “Algebroid Yang–Mills theory”, Phys. Rev. Lett., 93:21 (2004), 211601 | DOI | MR

[24] A. Yu. Vaintrob, “Algebroidy Li i gomologicheskie vektornye polya”, UMN, 52:2 (1997), 161–162 | DOI | MR | Zbl

[25] I. Vaisman, “Remarks on the Lichnerowicz–Poisson cohomology”, Ann. Inst. Fourier (Grenoble), 40:4 (1990), 951–963 | DOI | MR | Zbl