Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 3-21
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider discrete nonlinear hyperbolic equations on quad-graphs, in particular on $\mathbb{Z}^2$. The fields are associated with the vertices and an equation of the form $Q(x_1,x_2,x_3,x_4)=0$ relates four vertices of one cell. The integrability of equations is understood as 3D-consistency, which means that it is possible to impose equations of the same type on all faces of a three-dimensional cube so that the resulting system will be consistent. This allows one to extend these equations also to the multidimensional lattices $\mathbb{Z}^N$. We classify integrable equations with complex fields $x$ and polynomials $Q$ multiaffine in all variables. Our method is based on the analysis of singular solutions.
Keywords:
integrability, quad-graph, multidimensional consistency, zero curvature representation, Bäcklund transformation, Bianchi permutability
Mots-clés : Möbius transformation.
Mots-clés : Möbius transformation.
@article{FAA_2009_43_1_a0,
author = {V. E. Adler and A. I. Bobenko and Yu. B. Suris},
title = {Discrete {Nonlinear} {Hyperbolic} {Equations.} {Classification} of {Integrable} {Cases}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {3--21},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/}
}
TY - JOUR AU - V. E. Adler AU - A. I. Bobenko AU - Yu. B. Suris TI - Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2009 SP - 3 EP - 21 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/ LA - ru ID - FAA_2009_43_1_a0 ER -
%0 Journal Article %A V. E. Adler %A A. I. Bobenko %A Yu. B. Suris %T Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases %J Funkcionalʹnyj analiz i ego priloženiâ %D 2009 %P 3-21 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/ %G ru %F FAA_2009_43_1_a0
V. E. Adler; A. I. Bobenko; Yu. B. Suris. Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/