Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 3-21

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider discrete nonlinear hyperbolic equations on quad-graphs, in particular on $\mathbb{Z}^2$. The fields are associated with the vertices and an equation of the form $Q(x_1,x_2,x_3,x_4)=0$ relates four vertices of one cell. The integrability of equations is understood as 3D-consistency, which means that it is possible to impose equations of the same type on all faces of a three-dimensional cube so that the resulting system will be consistent. This allows one to extend these equations also to the multidimensional lattices $\mathbb{Z}^N$. We classify integrable equations with complex fields $x$ and polynomials $Q$ multiaffine in all variables. Our method is based on the analysis of singular solutions.
Keywords: integrability, quad-graph, multidimensional consistency, zero curvature representation, Bäcklund transformation, Bianchi permutability
Mots-clés : Möbius transformation.
@article{FAA_2009_43_1_a0,
     author = {V. E. Adler and A. I. Bobenko and Yu. B. Suris},
     title = {Discrete {Nonlinear} {Hyperbolic} {Equations.} {Classification} of {Integrable} {Cases}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/}
}
TY  - JOUR
AU  - V. E. Adler
AU  - A. I. Bobenko
AU  - Yu. B. Suris
TI  - Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 3
EP  - 21
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/
LA  - ru
ID  - FAA_2009_43_1_a0
ER  - 
%0 Journal Article
%A V. E. Adler
%A A. I. Bobenko
%A Yu. B. Suris
%T Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 3-21
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/
%G ru
%F FAA_2009_43_1_a0
V. E. Adler; A. I. Bobenko; Yu. B. Suris. Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/