Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider discrete nonlinear hyperbolic equations on quad-graphs, in particular on $\mathbb{Z}^2$. The fields are associated with the vertices and an equation of the form $Q(x_1,x_2,x_3,x_4)=0$ relates four vertices of one cell. The integrability of equations is understood as 3D-consistency, which means that it is possible to impose equations of the same type on all faces of a three-dimensional cube so that the resulting system will be consistent. This allows one to extend these equations also to the multidimensional lattices $\mathbb{Z}^N$. We classify integrable equations with complex fields $x$ and polynomials $Q$ multiaffine in all variables. Our method is based on the analysis of singular solutions.
Keywords: integrability, quad-graph, multidimensional consistency, zero curvature representation, Bäcklund transformation, Bianchi permutability
Mots-clés : Möbius transformation.
@article{FAA_2009_43_1_a0,
     author = {V. E. Adler and A. I. Bobenko and Yu. B. Suris},
     title = {Discrete {Nonlinear} {Hyperbolic} {Equations.} {Classification} of {Integrable} {Cases}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/}
}
TY  - JOUR
AU  - V. E. Adler
AU  - A. I. Bobenko
AU  - Yu. B. Suris
TI  - Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 3
EP  - 21
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/
LA  - ru
ID  - FAA_2009_43_1_a0
ER  - 
%0 Journal Article
%A V. E. Adler
%A A. I. Bobenko
%A Yu. B. Suris
%T Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 3-21
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/
%G ru
%F FAA_2009_43_1_a0
V. E. Adler; A. I. Bobenko; Yu. B. Suris. Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/

[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[2] V. E. Adler, “Bäcklund transformation for the Krichever–Novikov equation”, Internat. Math. Res. Notices, 1 (1998), 1–4 | DOI | MR | Zbl

[3] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233:3 (2003), 513–543 | DOI | MR | Zbl

[4] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings”, Comm. Anal. Geom., 12:5 (2004), 967–1007 | DOI | MR | Zbl

[5] V. E. Adler, Yu. B. Suris, “Q4: Integrable master equation related to an elliptic curve”, Internat. Math. Res. Notices, 47 (2004), 2523–2553 | DOI | MR | Zbl

[6] V. E. Adler, A. P. Veselov, “Cauchy problem for integrable discrete equations on quad-graphs”, Acta Appl. Math., 84:2 (2004), 237–262 | DOI | MR | Zbl

[7] V. Bazhanov, V. Mangazeev, S. Sergeev, “Faddeev–Volkov solution of the Yang–Baxter equation and discrete conformal symmetry”, Nuclear Phys. B, 784:3 (2007), 234–258 | DOI | MR | Zbl

[8] V. Bazhanov, S. Sergeev, “Zamolodchikov's tetrahedron equation and hidden structure of quantum groups”, J. Phys. A, 39:13 (2006), 3295–3310 | DOI | MR | Zbl

[9] L. Bianchi, Vorlesungen über Differenzialgeometrie, Teubner, Leipzig, 1899 | Zbl

[10] A. I. Bobenko, Yu. B. Suris, “Integrable systems on quad-graphs”, Internat. Math. Res. Notices, 11 (2002), 573–611 | DOI | MR | Zbl

[11] A. I. Bobenko, Yu. B. Suris, “Integrable non-commutative equations on quad-graphs. The consistency approach”, Lett. Math. Phys., 61:3 (2002), 241–254 | DOI | MR | Zbl

[12] A. I. Bobenko, Yu. B. Suris, Discrete Differential Geometry. Integrable Structure, Graduate Studies in Math., 98, Amer. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl

[13] J. Hietarinta, “A new two-dimensional lattice model that is “consistent around a cube””, J. Phys. A, 37:6 (2004), L67–L73 | DOI | MR | Zbl

[14] J. Hietarinta, “Searching for CAC-maps”, J. Nonlinear Math. Phys., 12, Suppl. 2 (2005), 223–230 | DOI | MR | Zbl

[15] R. M. Kashaev, I. G. Korepanov, S. M. Sergeev, “Funktsionalnoe uravnenie tetraedrov”, TMF, 117:3 (1998), 370–384 | DOI | MR | Zbl

[16] I. G. Korepanov, Algebraic Integrable Dynamical Systems, 2+1-Dimensional Models in Wholly Discrete Space-Time, and Inhomogeneous Models in 2-Dimensional Statistical Physics, http://arxiv.org/abs/solv-int/9506003

[17] J.-M. Maillet, F. W. Nijhoff, “Integrability for multidimensional lattice models”, Phys. Lett. B, 224:4 (1989), 389–396 | DOI | MR

[18] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k klassifikatsii nelineinykh uravnenii. Polnye spiski integriruemykh sistem”, UMN, 42:4 (1987), 3–53 | MR

[19] F. W. Nijhoff, “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297 (2002), 49–58 | DOI | MR | Zbl

[20] V. Papageorgiou, A. Tongas, A. Veselov, “Yang–Baxter maps and symmetries of integrable equations on quad-graphs”, J. Math. Phys., 47:8 (2006), 083502 | DOI | MR | Zbl

[21] G. R. W. Quispel, F. W. Nijhoff, H. W. Capel, J. van der Linden, “Linear integral equations and nonlinear difference-difference equations”, Phys. A, 125:2–3 (1984), 344–380 | DOI | MR | Zbl

[22] A. Ramani, N. Joshi, B. Grammaticos, T. Tamizhmani, “Deconstructing an integrable lattice equation”, J. Phys. A, 39:8 (2006), L145–L149 | DOI | MR | Zbl

[23] Yu. B. Suris, A. P. Veselov, “Lax pairs for Yang–Baxter maps”, J. Nonlinear Math. Phys., 10:suppl. 2 (2003), 223–230 | DOI | MR

[24] A. P. Veselov, “Integriruemye otobrazheniya”, UMN, 46:5 (1991), 3–45 | MR | Zbl

[25] A. P. Veselov, “Yang–Baxter maps: dynamical point of view”, Combinatorial Aspect of Integrable Systems, MSJ Mem., 17, Math. Soc. Japan, Tokyo, 2007, 145–167 | MR | Zbl

[26] C. Viallet, Algebraic Entropy for Lattice Equations, http://arxiv.org/abs/math-ph/0609043

[27] A. Volkov, “Quantum lattice KdV equation”, Lett. Math. Phys., 39:4 (1997), 313–329 | DOI | MR | Zbl

[28] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press, 1927, reprinted in 1996 | MR | Zbl