Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2009_43_1_a0, author = {V. E. Adler and A. I. Bobenko and Yu. B. Suris}, title = {Discrete {Nonlinear} {Hyperbolic} {Equations.} {Classification} of {Integrable} {Cases}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--21}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/} }
TY - JOUR AU - V. E. Adler AU - A. I. Bobenko AU - Yu. B. Suris TI - Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2009 SP - 3 EP - 21 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/ LA - ru ID - FAA_2009_43_1_a0 ER -
%0 Journal Article %A V. E. Adler %A A. I. Bobenko %A Yu. B. Suris %T Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases %J Funkcionalʹnyj analiz i ego priloženiâ %D 2009 %P 3-21 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/ %G ru %F FAA_2009_43_1_a0
V. E. Adler; A. I. Bobenko; Yu. B. Suris. Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a0/
[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR
[2] V. E. Adler, “Bäcklund transformation for the Krichever–Novikov equation”, Internat. Math. Res. Notices, 1 (1998), 1–4 | DOI | MR | Zbl
[3] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233:3 (2003), 513–543 | DOI | MR | Zbl
[4] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings”, Comm. Anal. Geom., 12:5 (2004), 967–1007 | DOI | MR | Zbl
[5] V. E. Adler, Yu. B. Suris, “Q4: Integrable master equation related to an elliptic curve”, Internat. Math. Res. Notices, 47 (2004), 2523–2553 | DOI | MR | Zbl
[6] V. E. Adler, A. P. Veselov, “Cauchy problem for integrable discrete equations on quad-graphs”, Acta Appl. Math., 84:2 (2004), 237–262 | DOI | MR | Zbl
[7] V. Bazhanov, V. Mangazeev, S. Sergeev, “Faddeev–Volkov solution of the Yang–Baxter equation and discrete conformal symmetry”, Nuclear Phys. B, 784:3 (2007), 234–258 | DOI | MR | Zbl
[8] V. Bazhanov, S. Sergeev, “Zamolodchikov's tetrahedron equation and hidden structure of quantum groups”, J. Phys. A, 39:13 (2006), 3295–3310 | DOI | MR | Zbl
[9] L. Bianchi, Vorlesungen über Differenzialgeometrie, Teubner, Leipzig, 1899 | Zbl
[10] A. I. Bobenko, Yu. B. Suris, “Integrable systems on quad-graphs”, Internat. Math. Res. Notices, 11 (2002), 573–611 | DOI | MR | Zbl
[11] A. I. Bobenko, Yu. B. Suris, “Integrable non-commutative equations on quad-graphs. The consistency approach”, Lett. Math. Phys., 61:3 (2002), 241–254 | DOI | MR | Zbl
[12] A. I. Bobenko, Yu. B. Suris, Discrete Differential Geometry. Integrable Structure, Graduate Studies in Math., 98, Amer. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl
[13] J. Hietarinta, “A new two-dimensional lattice model that is “consistent around a cube””, J. Phys. A, 37:6 (2004), L67–L73 | DOI | MR | Zbl
[14] J. Hietarinta, “Searching for CAC-maps”, J. Nonlinear Math. Phys., 12, Suppl. 2 (2005), 223–230 | DOI | MR | Zbl
[15] R. M. Kashaev, I. G. Korepanov, S. M. Sergeev, “Funktsionalnoe uravnenie tetraedrov”, TMF, 117:3 (1998), 370–384 | DOI | MR | Zbl
[16] I. G. Korepanov, Algebraic Integrable Dynamical Systems, 2+1-Dimensional Models in Wholly Discrete Space-Time, and Inhomogeneous Models in 2-Dimensional Statistical Physics, http://arxiv.org/abs/solv-int/9506003
[17] J.-M. Maillet, F. W. Nijhoff, “Integrability for multidimensional lattice models”, Phys. Lett. B, 224:4 (1989), 389–396 | DOI | MR
[18] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k klassifikatsii nelineinykh uravnenii. Polnye spiski integriruemykh sistem”, UMN, 42:4 (1987), 3–53 | MR
[19] F. W. Nijhoff, “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297 (2002), 49–58 | DOI | MR | Zbl
[20] V. Papageorgiou, A. Tongas, A. Veselov, “Yang–Baxter maps and symmetries of integrable equations on quad-graphs”, J. Math. Phys., 47:8 (2006), 083502 | DOI | MR | Zbl
[21] G. R. W. Quispel, F. W. Nijhoff, H. W. Capel, J. van der Linden, “Linear integral equations and nonlinear difference-difference equations”, Phys. A, 125:2–3 (1984), 344–380 | DOI | MR | Zbl
[22] A. Ramani, N. Joshi, B. Grammaticos, T. Tamizhmani, “Deconstructing an integrable lattice equation”, J. Phys. A, 39:8 (2006), L145–L149 | DOI | MR | Zbl
[23] Yu. B. Suris, A. P. Veselov, “Lax pairs for Yang–Baxter maps”, J. Nonlinear Math. Phys., 10:suppl. 2 (2003), 223–230 | DOI | MR
[24] A. P. Veselov, “Integriruemye otobrazheniya”, UMN, 46:5 (1991), 3–45 | MR | Zbl
[25] A. P. Veselov, “Yang–Baxter maps: dynamical point of view”, Combinatorial Aspect of Integrable Systems, MSJ Mem., 17, Math. Soc. Japan, Tokyo, 2007, 145–167 | MR | Zbl
[26] C. Viallet, Algebraic Entropy for Lattice Equations, http://arxiv.org/abs/math-ph/0609043
[27] A. Volkov, “Quantum lattice KdV equation”, Lett. Math. Phys., 39:4 (1997), 313–329 | DOI | MR | Zbl
[28] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press, 1927, reprinted in 1996 | MR | Zbl