Discrete Series of Representations for the Modular Double of the Quantum Group $U_q(\operatorname{sl}(2,\mathbb{R}))$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 98-104

Voir la notice de l'article provenant de la source Math-Net.Ru

The modular double of the quantum group $U_q(\operatorname{sl}(2))$ with deformation parameter $q=e^{i\pi\tau}$ is a natural object explicitly taking into account the duality $\tau\mapsto 1/\tau$. The use of the modular double in conformal field theory allows one to consider the region $1$ for the central charge of the Virasoro algebra when $|\tau|=1$. In this paper, a new discrete series of representations for the modular double of $U_q(\operatorname{sl}(2,\mathbb{R}))$ is found for such $\tau$.
Keywords: representation theory, quantum group, modular double.
@article{FAA_2008_42_4_a7,
     author = {L. D. Faddeev},
     title = {Discrete {Series} of {Representations} for the {Modular} {Double} of the {Quantum} {Group} $U_q(\operatorname{sl}(2,\mathbb{R}))$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {98--104},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a7/}
}
TY  - JOUR
AU  - L. D. Faddeev
TI  - Discrete Series of Representations for the Modular Double of the Quantum Group $U_q(\operatorname{sl}(2,\mathbb{R}))$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 98
EP  - 104
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a7/
LA  - ru
ID  - FAA_2008_42_4_a7
ER  - 
%0 Journal Article
%A L. D. Faddeev
%T Discrete Series of Representations for the Modular Double of the Quantum Group $U_q(\operatorname{sl}(2,\mathbb{R}))$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 98-104
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a7/
%G ru
%F FAA_2008_42_4_a7
L. D. Faddeev. Discrete Series of Representations for the Modular Double of the Quantum Group $U_q(\operatorname{sl}(2,\mathbb{R}))$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 98-104. http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a7/