Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2008_42_4_a7, author = {L. D. Faddeev}, title = {Discrete {Series} of {Representations} for the {Modular} {Double} of the {Quantum} {Group} $U_q(\operatorname{sl}(2,\mathbb{R}))$}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {98--104}, publisher = {mathdoc}, volume = {42}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a7/} }
TY - JOUR AU - L. D. Faddeev TI - Discrete Series of Representations for the Modular Double of the Quantum Group $U_q(\operatorname{sl}(2,\mathbb{R}))$ JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2008 SP - 98 EP - 104 VL - 42 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a7/ LA - ru ID - FAA_2008_42_4_a7 ER -
%0 Journal Article %A L. D. Faddeev %T Discrete Series of Representations for the Modular Double of the Quantum Group $U_q(\operatorname{sl}(2,\mathbb{R}))$ %J Funkcionalʹnyj analiz i ego priloženiâ %D 2008 %P 98-104 %V 42 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a7/ %G ru %F FAA_2008_42_4_a7
L. D. Faddeev. Discrete Series of Representations for the Modular Double of the Quantum Group $U_q(\operatorname{sl}(2,\mathbb{R}))$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 98-104. http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a7/
[1] L. D. Faddeev, “Modular double of a quantum group”, Math. Phys. Studies, 21, Kluwer Acad. Publ., Dordrecht, 2000, 149–156 | MR | Zbl
[2] A. G. Bytsko, J. Teschner, “Quantization of models non-compact quantum group symmetry: modular XXZ magnet and lattice sinh-Gordon model”, J. Phys. A: Math. Gen., 39:41 (2006), 12927–12981 | DOI | MR | Zbl
[3] B. Ponsot, J. Teschner, “Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of $U_q(\operatorname{sl}(2,\mathbb{R}$))”, Comm. Math. Phys., 224:3 (2001), 613–655 | DOI | MR
[4] S. Kharchev, D. Lebedev, M. Semenov-Tian-Shansky, “Unitary representations of $U_q(\operatorname{sl}_2(\mathbb{R}$)), the modular double, and the multiparticle $q$-deformed Toda chains”, Comm. Math. Phys., 225:3 (2002), 573–609 | DOI | MR | Zbl
[5] K. Schmüdgen, “Operator representation of $U_{q}(\operatorname{sl}(2))$”, Lett. Math. Phys., 37:2 (1996), 211–222 | DOI | MR | Zbl
[6] A. Yu. Volkov, “Noncommutative hypergeometry”, Comm. Math. Phys., 258:2 (2005), 257–273 | DOI | MR | Zbl
[7] R. M. Kashaev, “Quantization of Teichmüller spaces and the quantum dilogarithm”, Lett. Math. Phys., 43:2 (1998), 105–115 | DOI | MR | Zbl
[8] V. V. Fok, L. O. Chekhov, “Kvantovye prostranstva Teikhmyullera”, TMF, 120:3 (1999), 511–528 | DOI | MR
[9] J.-L. Gervais, A. Neveu, “The dual string spectrum in Polyakov's quantization, I”, Nucl. Phys. B, 199:1 (1982), 59–76 | DOI | MR
[10] T. L. Curtright, C. B. Thorn, “Conformally invariant quantization of the Liouville theory”, Phys. Rev. Lett., 48:19 (1982), 1309–1313 | DOI | MR
[11] A. M. Polyakov, “Quantum geometry of bosonic strings”, Phys. Lett. B, 103:3 (1981), 207–210 | DOI | MR
[12] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, “Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz”, Comm. Math. Phys., 177:2 (1996), 381 ; http://arxiv.org/abs/hep-th/9412229 | DOI | MR | Zbl | MR