Difference Operators and Determinantal Point Processes
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 83-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a family $\{P\}$ of determinantal point processes arising in representation theory and random matrix theory. The processes $P$ live on a one-dimensional lattice and have a number of special properties. One of them is that the correlation kernel $K(x,y)$ of each of the processes is a projection kernel: it determines a projection $K$ in the Hilbert $\ell^2$ space on the lattice. Moreover, the projection $K$ can be realized as the spectral projection onto the positive part of the spectrum of a self-adjoint difference second-order operator $D$. The aim of the paper is to show that the difference operators $D$ can be efficiently used in the study of limit transitions within the family $\{P\}$.
Keywords: point process, determinantal process, Plancherel measure, z-measure
Mots-clés : orthogonal polynomial ensemble, Meixner polynomial, Krawtchouk polynomial.
@article{FAA_2008_42_4_a6,
     author = {G. I. Olshanskii},
     title = {Difference {Operators} and {Determinantal} {Point} {Processes}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {83--97},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a6/}
}
TY  - JOUR
AU  - G. I. Olshanskii
TI  - Difference Operators and Determinantal Point Processes
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 83
EP  - 97
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a6/
LA  - ru
ID  - FAA_2008_42_4_a6
ER  - 
%0 Journal Article
%A G. I. Olshanskii
%T Difference Operators and Determinantal Point Processes
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 83-97
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a6/
%G ru
%F FAA_2008_42_4_a6
G. I. Olshanskii. Difference Operators and Determinantal Point Processes. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 83-97. http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a6/

[1] J. Baik, P. Deift, K. Johansson, “On the distribution of the length of the longest increasing subsequence of random permutations”, J. Amer. Math. Soc., 12:4 (1999), 1119–1178 | DOI | MR | Zbl

[2] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, t. 2, Fizmatlit, M., 1974

[3] A. Borodin, V. Gorin, Shuffling algorithm for boxed plane partitions, http://arxiv.org/abs/0804.3071v2 | MR

[4] A. Borodin, A. Okounkov, G. Olshanski, “Asymptotics of Plancherel measures for symmetric groups”, J. Amer. Math. Soc., 13:3 (2000), 481–515 | DOI | MR | Zbl

[5] A. Borodin, G. Olshanski, “Distributions on partitions, point processes and the hypergeometric kernel”, Comm. Math. Phys., 211:2 (2000), 335–358 | DOI | MR | Zbl

[6] A. Borodin, G. Olshanski, “Harmonic analysis on the infinite–dimensional unitary group and determinantal point processes”, Ann. of Math., 161:3 (2005), 1319–1422 | DOI | MR | Zbl

[7] A. Borodin, G. Olshanski, “Random partitions and the gamma kernel”, Adv. Math., 194:1 (2005), 141–202 | DOI | MR | Zbl

[8] A. Borodin, G. Olshanski, “Markov processes on partitions”, Probab. Theory Related Fields, 135:1 (2006), 84–152 | DOI | MR | Zbl

[9] A. Borodin, G. Olshanski, “Meixner polynomials and random partitions”, Moscow Math.`J., 6:4 (2006), 629–655 | DOI | MR | Zbl

[10] A. Borodin, G. Olshanski, “Asymptotics of Plancherel-type random partitions”, J. Algebra, 313:1 (2007), 40–60 | DOI | MR | Zbl

[11] P. Deift, “Integrable operators”, Differential Operators and Spectral Theory: M. Sh. Birman's 70th anniversary collection, Amer. Math. Soc. Transl., Ser. 2, 189, Amer. Math. Soc., Providence, RI, 1999, 69–84 | MR | Zbl

[12] J. Dixmier, “Représentations intégrables du groupe de De Sitter”, Bull. Soc. Math. France, 89 (1961), 9–41 | DOI | MR | Zbl

[13] V. E. Gorin, “Neperesekayuschiesya puti i ansambl ortogonalnykh mnogochlenov Khana”, Funkts. analiz i ego pril., 42:3 (2008), 23–44 | DOI | MR

[14] V. Ivanov, G. Olshanski, “Kerov's central limit theorem for the Plancherel measure on Young diagrams”, Symmetric Functions 2001. Surveys of Developments and Perspectives, Proc. NATO Advanced Study Institute (Cambridge, UK, June 25–July 6, 2001), NATO Sci. Ser. II Math. Phys. Chem., 74, Kluwer Acad. Publ., Dordrecht, 2002, 93–151 | MR | Zbl

[15] K. Johansson, “Discrete orthogonal polynomial ensembles and the Plancherel measure”, Ann. of Math., 153:1 (2001), 259–296 | DOI | MR | Zbl

[16] S. V. Kerov, Asymptotic representation theory of the symmetric group and its applications in analysis, Transl. of Math. Monographs, 219, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl

[17] R. Koekoek, R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report no. 98–17, Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics, 1998; http://aw.twi.tudelft.nl/~koekoek/askey.html

[18] W. König, “Orthogonal polynomial ensembles in probability theory”, Probab. Surv., 2 (2005), 385–447 | DOI | MR

[19] A. Lenard, “Correlation functions and the uniqueness of the state in classical statistical mechanics”, Comm. Math. Phys., 30 (1973), 35–44 | DOI | MR

[20] B. F. Logan, L. A. Shepp, “A variational problem for random Young tableaux”, Adv. Math., 26:2 (1977), 206–222 | DOI | MR | Zbl

[21] A. Okounkov, “$\mathrm{SL}(2)$ and z-measures”, Random matrix models and their applications, MSRI Publ., 40, Cambridge Univ. Press, 2001, 71–94 ; http://arxiv.org/abs/math/0002135 | MR

[22] A. Okounkov, “Infinite wedge and random partitions”, Selecta Math. (N. S.), 7:1 (2001), 57–81 ; http://arxiv.org/abs/math/9907127 | DOI | MR | Zbl

[23] G. Olshanski, “Point processes related to the infinite symmetric group”, The Orbit Method in Geometry and Physics: in Honor of A. A. Kirillov, Progr. Math., 213, Birkhäuser, Boston, MA, 2003, 349–393 | MR | Zbl

[24] G. Olshanski, “An introduction to harmonic analysis on the infinite symmetric group”, Asymptotic Combinatorics with Applications to Mathematical Physics (St. Petersburg, 2001), Lecture Notes in Math., 1815, Springer-Verlag, Berlin, 2003, 127–160 | DOI | MR | Zbl

[25] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, tt. 1, 2, Mir, M., 1977, 1978 | MR

[26] А. Сошников “Determinantnye tochechnye sluchainye polya”, UMN, 55:5 (2000), 107–160 | DOI | MR | Zbl

[27] A. M. Vershik, S. V. Kerov, “Asimptotika mery Plansherelya simmetricheskoi gruppy i predelnaya forma tablits Yunga”, Dokl. AN SSSR, 233 (1977), 1024–1027 | Zbl