Family Algebras and Generalized Exponents for Polyvector Representations of Simple Lie Algebras of Type~$B_n$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 72-82

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an explicit formula for the exterior powers $\wedge^k\pi_1$ of the defining representation $\pi_1$ of the simple Lie algebra $\mathfrak{so}(2n+1,\mathbb{C})$. We use the technique of family algebras. All representations in question are children of the spinor representation $\sigma$ of $\mathfrak{so}(2n+1,\mathbb{C})$. We also give a survey of main results on family algebras.
Keywords: family algebra, generalized exponent, representation of Lie algebra, spinor representation.
@article{FAA_2008_42_4_a5,
     author = {A. A. Kirillov},
     title = {Family {Algebras} and {Generalized} {Exponents} for {Polyvector} {Representations} of {Simple} {Lie} {Algebras} of {Type~}$B_n$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {72--82},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a5/}
}
TY  - JOUR
AU  - A. A. Kirillov
TI  - Family Algebras and Generalized Exponents for Polyvector Representations of Simple Lie Algebras of Type~$B_n$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 72
EP  - 82
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a5/
LA  - ru
ID  - FAA_2008_42_4_a5
ER  - 
%0 Journal Article
%A A. A. Kirillov
%T Family Algebras and Generalized Exponents for Polyvector Representations of Simple Lie Algebras of Type~$B_n$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 72-82
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a5/
%G ru
%F FAA_2008_42_4_a5
A. A. Kirillov. Family Algebras and Generalized Exponents for Polyvector Representations of Simple Lie Algebras of Type~$B_n$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 72-82. http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a5/