Family Algebras and Generalized Exponents for Polyvector Representations of Simple Lie Algebras of Type~$B_n$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 72-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an explicit formula for the exterior powers $\wedge^k\pi_1$ of the defining representation $\pi_1$ of the simple Lie algebra $\mathfrak{so}(2n+1,\mathbb{C})$. We use the technique of family algebras. All representations in question are children of the spinor representation $\sigma$ of $\mathfrak{so}(2n+1,\mathbb{C})$. We also give a survey of main results on family algebras.
Keywords: family algebra, generalized exponent, representation of Lie algebra, spinor representation.
@article{FAA_2008_42_4_a5,
     author = {A. A. Kirillov},
     title = {Family {Algebras} and {Generalized} {Exponents} for {Polyvector} {Representations} of {Simple} {Lie} {Algebras} of {Type~}$B_n$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {72--82},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a5/}
}
TY  - JOUR
AU  - A. A. Kirillov
TI  - Family Algebras and Generalized Exponents for Polyvector Representations of Simple Lie Algebras of Type~$B_n$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 72
EP  - 82
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a5/
LA  - ru
ID  - FAA_2008_42_4_a5
ER  - 
%0 Journal Article
%A A. A. Kirillov
%T Family Algebras and Generalized Exponents for Polyvector Representations of Simple Lie Algebras of Type~$B_n$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 72-82
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a5/
%G ru
%F FAA_2008_42_4_a5
A. A. Kirillov. Family Algebras and Generalized Exponents for Polyvector Representations of Simple Lie Algebras of Type~$B_n$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 72-82. http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a5/

[1] E. B. Dynkin, “Nekotorye svoistva sistem vesov lineinykh predstavlenii poluprostykh grupp Li”, Dokl. AN SSSR, 71:2 (1950), 221–224 | MR | Zbl

[2] R. K. Brylinski (Gupta), “Limits of weight spaces, Lusztig's $q$-analogs, and fibering of adjoint orbits”, J. Amer. Math. Soc., 2:3 (1989), 517–533 | DOI | MR | Zbl

[3] R. K. Gupta, “Generalized exponents via Hall–Littlewood symmetric functions”, Bull. Amer. Math. Soc., 16:2 (1987), 287–291 | DOI | MR | Zbl

[4] W. Hesselink, “Characters of nullcone”, Math. Ann., 252:3 (1980), 179–182 | DOI | MR | Zbl

[5] A. A. Kirillov, “Family algebras”, Electron. Res. Announc. Amer. Math. Soc., 6:1 (2000), 7–20 (electronic) | DOI | MR | Zbl

[6] A. A. Kirillov, “Introduction to family algebras”, Moscow Math. J., 1:1 (2001), 49–63 | DOI | MR | Zbl

[7] B. Kostant, “Lie group representations on polynomial rings”, Amer. J. Math., 85 (1963), 327–404 | DOI | MR | Zbl

[8] G. Lusztig, “Singularities, character formulas, and a $q$-analogue of Kostant's weight multiplicity formula”, Analyse et Topologie sur les Espaces Singuliers (II–III), Astérisque, 101–102, Soc. Math. France, Paris, 1983, 208–227 | MR

[9] D. Panyushev, “Weight multiplicity free representations, $\mathfrak g$-endomorphism algebras and Dynkin polynomials”, J. London Math. Soc., 69:2 (2004), 273–290 | DOI | MR | Zbl