Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2008_42_4_a0, author = {M. S. Agranovich}, title = {Spectral {Boundary} {Value} {Problems} in {Lipschitz} {Domains} for {Strongly} {Elliptic} {Systems} in {Banach} {Spaces} $H_p^\sigma$ and~$B_p^\sigma$}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {2--23}, publisher = {mathdoc}, volume = {42}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a0/} }
TY - JOUR AU - M. S. Agranovich TI - Spectral Boundary Value Problems in Lipschitz Domains for Strongly Elliptic Systems in Banach Spaces $H_p^\sigma$ and~$B_p^\sigma$ JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2008 SP - 2 EP - 23 VL - 42 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a0/ LA - ru ID - FAA_2008_42_4_a0 ER -
%0 Journal Article %A M. S. Agranovich %T Spectral Boundary Value Problems in Lipschitz Domains for Strongly Elliptic Systems in Banach Spaces $H_p^\sigma$ and~$B_p^\sigma$ %J Funkcionalʹnyj analiz i ego priloženiâ %D 2008 %P 2-23 %V 42 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a0/ %G ru %F FAA_2008_42_4_a0
M. S. Agranovich. Spectral Boundary Value Problems in Lipschitz Domains for Strongly Elliptic Systems in Banach Spaces $H_p^\sigma$ and~$B_p^\sigma$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 2-23. http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a0/
[1] Sh. Agmon, “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems”, Comm. Pure Appl. Math., 15:2 (1962), 119–147 | DOI | MR | Zbl
[2] M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, N. N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Chapter V, Wiley–VCH, Berlin etc., 1999 | MR | MR | Zbl
[3] M. C. Agranovich, “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, UMN, 57:5 (2002), 3–78 | DOI | MR
[4] M. S. Agranovich, “On a mixed Poincaré–Steklov type spectral problem in a Lipschitz domain”, Russ. J. Math. Phys., 13:3 (2006), 239–244 | DOI | MR | Zbl
[5] M. C. Agranovich, “Regulyarnost variatsionnykh reshenii lineinykh granichnykh zadach v lipshitsevykh oblastyakh”, Funkts. analiz i ego pril., 40:4 (2006), 83–103 | DOI | MR | Zbl
[6] M. C. Agranovich, “K teorii zadach Dirikhle i Neimana dlya lineinykh silno ellipticheskikh sistem v lipshitsevykh oblastyakh”, Funkts. analiz i ego pril., 41:4 (2007), 1–21 | DOI | MR | Zbl
[7] M. S. Agranovich, “Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary”, Russ. J. Math. Phys., 15:2 (2008), 146–155 | DOI | MR
[8] M. C. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | MR | Zbl
[9] I. Berg, I. Lëfstrëm, Interpolyatsionnye prostranstva, Mir, M., 1980 | MR
[10] M. C. Birman, M. Z. Solomyak, “Kusochno-polinomialnye priblizheniya funktsii klassov $W_p^\alpha$”, Matem. sb., 73:3 (1967), 331–355 | MR | Zbl
[11] M. C. Birman, M. Z. Solomyak, “Spektralnaya asimptotika negladkikh ellipticheskikh operatorov, I, II”, Trudy MMO, 27, 1972, 3–52 ; 28, 1973, 3–34 | MR | Zbl | Zbl
[12] M. C. Birman, M. Z. Solomyak, “Kolichestvennyi analiz v teoremakh vlozheniya Soboleva i prilozheniya k spektralnoi teorii”, Desyataya matem. shkola, In-t matematiki AN USSR, Kiev, 1974, 5–189 | MR
[13] R. M. Brown, Z. Shen, “A note on boundary value problems for the heat equation in Lipschitz cylinders”, Proc. Amer. Math. Soc., 119:2 (1993), 585–594 | DOI | MR | Zbl
[14] J. Burgoyne, “Denseness of the generalized eigenvectors of a discrete operator in a Banach space”, J. Operator Theory, 33 (1995), 279–297 | MR | Zbl
[15] N. Danford, Dzh. T. Shvarts, Lineinye operatory, t. II, Mir, M., 1966
[16] D. E. Edmunds, W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford Univ. Press, Oxford, 1987 | MR | Zbl
[17] D. E. Edmunds, H. Triebel, Function Spaces, Entropy Numbers, and Differential Operators, Cambridge Univ. Press, Cambridge, 1996 | MR
[18] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965
[19] A. Grothendieck, Produits tenzoriels topologiques et espaces nucléares, Mem. Amer. Math. Soc., 16, 1955 | MR
[20] A. Grotendik, “Teoriya Fredgolma”, Cb. perevodov Matematika, 2:5 (1958), 51–103
[21] S. Janson, P. Nilsson, J. Peetre, “Notes on Wolff's note on interpolation spaces”, Proc. London Math. Soc., 48:2 (1984), 283–299 | DOI | MR | Zbl
[22] A. Jonsson, H. Wallin, Function Spaces on Subsets of $\mathbb{R}^n$, Math. Rep., 2, no. 1, Academic Publ., Harwood, 1984 | MR
[23] H. König, Eigenvalue Distribution of Compact Operators, Operator Theory: Advances and Applications, 16, Birkhäuser, Basel etc., 1986 | DOI | MR | Zbl
[24] V. A. Kozlov, V. G. Mazżya, J. Rossmann, Elliptic Boundary Value Problems in Domain with Point Singularities, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[25] P. D. Lax, A. N. Milgram, “Parabolic equations”, Contributions to the Theory of Partial Differential Equations, Ann. of Math. Studies, 33, Princeton Univ. Press, Princeton, NJ, 1954, 167–190 | MR
[26] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956
[27] V. B. Lidskii, “O summiruemosti ryadov po glavnym vektoram nesamosopryazhennykh operatorov”, Trudy MMO, 11, 1962, 3–35 | MR
[28] A. C. Markus, “Nekotorye priznaki polnoty sistemy kornevykh vektorov lineinogo operatora v banakhovom prostranstve”, Matem. sb., 70 (112):4 (1966), 526–561 | MR
[29] A. C. Markus, V. I. Matsaev, “Analogi neravenstv Veilya i teoremy o slede v banakhovom prostranstve”, Matem. sb., 86:2 (1971), 299–313 | MR | Zbl
[30] V. I. Matsaev, “Ob odnom metode otsenki rezolvent nesamosopryazhennykh operatorov”, Dokl. AN SSSR, 154:5 (1964), 1034–1037 | Zbl
[31] S. Mizokhata, Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977
[32] M. Mitrea, “The initial Dirichlet boundary value problem for general second order parabolic systems in nonsmooth manifolds”, Comm. Partial Differential Equations, 26:11–12 (2001), 1975–2036 | DOI | MR | Zbl
[33] M. Mitrea, M. Taylor, “Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev–Besov space results and the Poisson problem”, J. Funct. Anal., 176:1 (2000), 1–79 | DOI | MR | Zbl
[34] L. Nirenberg, “Remarks on strongly elliptic partial differential equations”, Comm. Pure Appl. Math., 8 (1955), 649–675 | DOI | MR | Zbl
[35] A. Pietsch, Eigenvalues and $s$-Numbers, Acad. Verl., Leipzig, 1987 | MR
[36] V. S. Rychkov, “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc. (2), 60:1 (1999), 237–257 | DOI | MR | Zbl
[37] J. Savaré, “Regularity results for elliptic equations in Lipschitz domains”, J. Funct. Anal., 152:1 (1998), 176–201 | DOI | MR | Zbl
[38] Z. Shen, “Resolvent estimates in $L^p$ for elliptic systems in Lipschitz domains”, J. Funct. Anal., 133:1 (1995), 224–251 | DOI | MR | Zbl
[39] I. Ya. Shneiberg, “Spektralnye svoistva lineinykh operatorov v interpolyatsionnykh semeistvakh banakhovykh prostranstv”, Matem. issled., 9:2 (1974), 214–227 | MR
[40] T. A. Suslina, “Spectral asymptotics of variational problems with elliptic constraints in domains with piecewise smooth boundary”, Russ. J. Math. Phys., 6:2 (1999), 214–234 | MR | Zbl
[41] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR
[42] H. Triebel, “Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers”, Rev. Mat. Comput., 15:2 (2002), 475–524 | MR | Zbl
[43] M. I. Vishik, “O silno ellipticheskikh sistemakh differentsialnykh uravnenii”, Matem. cb., 29 (71):3 (1951), 615–676 | Zbl