Spectral Boundary Value Problems in Lipschitz Domains for Strongly Elliptic Systems in Banach Spaces $H_p^\sigma$ and~$B_p^\sigma$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 2-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a bounded Lipschitz domain, we consider a strongly elliptic second-order equation with spectral parameter without assuming that the principal part is Hermitian. For the Dirichlet and Neumann problems in a weak setting, we prove the optimal resolvent estimates in the spaces of Bessel potentials and the Besov spaces. We do not use surface potentials. In these spaces, we derive a representation of the resolvent as a ratio of entire analytic functions with sharp estimates of their growth and prove theorems on the completeness of the root functions and on the summability of Fourier series with respect to them by the Abel–Lidskii method. Preliminarily, such questions for abstract operators in Banach spaces are discussed. For the Steklov problem with spectral parameter in the boundary condition, we obtain similar results. We indicate applications of the resolvent estimates to parabolic problems in a Lipschitz cylinder. We also indicate generalizations to systems of equations.
Keywords: strong ellipticity, Lipschitz domain, potential space, weak solution, optimal resolvent estimate, determinant of a compact operator, completeness of root functions, Abel–Lidskii summability, parabolic semigroup.
Mots-clés : Besov space
@article{FAA_2008_42_4_a0,
     author = {M. S. Agranovich},
     title = {Spectral {Boundary} {Value} {Problems} in {Lipschitz} {Domains} for {Strongly} {Elliptic} {Systems} in {Banach} {Spaces} $H_p^\sigma$ and~$B_p^\sigma$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {2--23},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a0/}
}
TY  - JOUR
AU  - M. S. Agranovich
TI  - Spectral Boundary Value Problems in Lipschitz Domains for Strongly Elliptic Systems in Banach Spaces $H_p^\sigma$ and~$B_p^\sigma$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 2
EP  - 23
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a0/
LA  - ru
ID  - FAA_2008_42_4_a0
ER  - 
%0 Journal Article
%A M. S. Agranovich
%T Spectral Boundary Value Problems in Lipschitz Domains for Strongly Elliptic Systems in Banach Spaces $H_p^\sigma$ and~$B_p^\sigma$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 2-23
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a0/
%G ru
%F FAA_2008_42_4_a0
M. S. Agranovich. Spectral Boundary Value Problems in Lipschitz Domains for Strongly Elliptic Systems in Banach Spaces $H_p^\sigma$ and~$B_p^\sigma$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 2-23. http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a0/

[1] Sh. Agmon, “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems”, Comm. Pure Appl. Math., 15:2 (1962), 119–147 | DOI | MR | Zbl

[2] M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, N. N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Chapter V, Wiley–VCH, Berlin etc., 1999 | MR | MR | Zbl

[3] M. C. Agranovich, “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, UMN, 57:5 (2002), 3–78 | DOI | MR

[4] M. S. Agranovich, “On a mixed Poincaré–Steklov type spectral problem in a Lipschitz domain”, Russ. J. Math. Phys., 13:3 (2006), 239–244 | DOI | MR | Zbl

[5] M. C. Agranovich, “Regulyarnost variatsionnykh reshenii lineinykh granichnykh zadach v lipshitsevykh oblastyakh”, Funkts. analiz i ego pril., 40:4 (2006), 83–103 | DOI | MR | Zbl

[6] M. C. Agranovich, “K teorii zadach Dirikhle i Neimana dlya lineinykh silno ellipticheskikh sistem v lipshitsevykh oblastyakh”, Funkts. analiz i ego pril., 41:4 (2007), 1–21 | DOI | MR | Zbl

[7] M. S. Agranovich, “Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary”, Russ. J. Math. Phys., 15:2 (2008), 146–155 | DOI | MR

[8] M. C. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | MR | Zbl

[9] I. Berg, I. Lëfstrëm, Interpolyatsionnye prostranstva, Mir, M., 1980 | MR

[10] M. C. Birman, M. Z. Solomyak, “Kusochno-polinomialnye priblizheniya funktsii klassov $W_p^\alpha$”, Matem. sb., 73:3 (1967), 331–355 | MR | Zbl

[11] M. C. Birman, M. Z. Solomyak, “Spektralnaya asimptotika negladkikh ellipticheskikh operatorov, I, II”, Trudy MMO, 27, 1972, 3–52 ; 28, 1973, 3–34 | MR | Zbl | Zbl

[12] M. C. Birman, M. Z. Solomyak, “Kolichestvennyi analiz v teoremakh vlozheniya Soboleva i prilozheniya k spektralnoi teorii”, Desyataya matem. shkola, In-t matematiki AN USSR, Kiev, 1974, 5–189 | MR

[13] R. M. Brown, Z. Shen, “A note on boundary value problems for the heat equation in Lipschitz cylinders”, Proc. Amer. Math. Soc., 119:2 (1993), 585–594 | DOI | MR | Zbl

[14] J. Burgoyne, “Denseness of the generalized eigenvectors of a discrete operator in a Banach space”, J. Operator Theory, 33 (1995), 279–297 | MR | Zbl

[15] N. Danford, Dzh. T. Shvarts, Lineinye operatory, t. II, Mir, M., 1966

[16] D. E. Edmunds, W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford Univ. Press, Oxford, 1987 | MR | Zbl

[17] D. E. Edmunds, H. Triebel, Function Spaces, Entropy Numbers, and Differential Operators, Cambridge Univ. Press, Cambridge, 1996 | MR

[18] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[19] A. Grothendieck, Produits tenzoriels topologiques et espaces nucléares, Mem. Amer. Math. Soc., 16, 1955 | MR

[20] A. Grotendik, “Teoriya Fredgolma”, Cb. perevodov Matematika, 2:5 (1958), 51–103

[21] S. Janson, P. Nilsson, J. Peetre, “Notes on Wolff's note on interpolation spaces”, Proc. London Math. Soc., 48:2 (1984), 283–299 | DOI | MR | Zbl

[22] A. Jonsson, H. Wallin, Function Spaces on Subsets of $\mathbb{R}^n$, Math. Rep., 2, no. 1, Academic Publ., Harwood, 1984 | MR

[23] H. König, Eigenvalue Distribution of Compact Operators, Operator Theory: Advances and Applications, 16, Birkhäuser, Basel etc., 1986 | DOI | MR | Zbl

[24] V. A. Kozlov, V. G. Mazżya, J. Rossmann, Elliptic Boundary Value Problems in Domain with Point Singularities, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[25] P. D. Lax, A. N. Milgram, “Parabolic equations”, Contributions to the Theory of Partial Differential Equations, Ann. of Math. Studies, 33, Princeton Univ. Press, Princeton, NJ, 1954, 167–190 | MR

[26] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[27] V. B. Lidskii, “O summiruemosti ryadov po glavnym vektoram nesamosopryazhennykh operatorov”, Trudy MMO, 11, 1962, 3–35 | MR

[28] A. C. Markus, “Nekotorye priznaki polnoty sistemy kornevykh vektorov lineinogo operatora v banakhovom prostranstve”, Matem. sb., 70 (112):4 (1966), 526–561 | MR

[29] A. C. Markus, V. I. Matsaev, “Analogi neravenstv Veilya i teoremy o slede v banakhovom prostranstve”, Matem. sb., 86:2 (1971), 299–313 | MR | Zbl

[30] V. I. Matsaev, “Ob odnom metode otsenki rezolvent nesamosopryazhennykh operatorov”, Dokl. AN SSSR, 154:5 (1964), 1034–1037 | Zbl

[31] S. Mizokhata, Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[32] M. Mitrea, “The initial Dirichlet boundary value problem for general second order parabolic systems in nonsmooth manifolds”, Comm. Partial Differential Equations, 26:11–12 (2001), 1975–2036 | DOI | MR | Zbl

[33] M. Mitrea, M. Taylor, “Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev–Besov space results and the Poisson problem”, J. Funct. Anal., 176:1 (2000), 1–79 | DOI | MR | Zbl

[34] L. Nirenberg, “Remarks on strongly elliptic partial differential equations”, Comm. Pure Appl. Math., 8 (1955), 649–675 | DOI | MR | Zbl

[35] A. Pietsch, Eigenvalues and $s$-Numbers, Acad. Verl., Leipzig, 1987 | MR

[36] V. S. Rychkov, “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc. (2), 60:1 (1999), 237–257 | DOI | MR | Zbl

[37] J. Savaré, “Regularity results for elliptic equations in Lipschitz domains”, J. Funct. Anal., 152:1 (1998), 176–201 | DOI | MR | Zbl

[38] Z. Shen, “Resolvent estimates in $L^p$ for elliptic systems in Lipschitz domains”, J. Funct. Anal., 133:1 (1995), 224–251 | DOI | MR | Zbl

[39] I. Ya. Shneiberg, “Spektralnye svoistva lineinykh operatorov v interpolyatsionnykh semeistvakh banakhovykh prostranstv”, Matem. issled., 9:2 (1974), 214–227 | MR

[40] T. A. Suslina, “Spectral asymptotics of variational problems with elliptic constraints in domains with piecewise smooth boundary”, Russ. J. Math. Phys., 6:2 (1999), 214–234 | MR | Zbl

[41] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[42] H. Triebel, “Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers”, Rev. Mat. Comput., 15:2 (2002), 475–524 | MR | Zbl

[43] M. I. Vishik, “O silno ellipticheskikh sistemakh differentsialnykh uravnenii”, Matem. cb., 29 (71):3 (1951), 615–676 | Zbl