On (2+1)-Dimensional Hydrodynamic Type Systems Possessing a Pseudopotential with Movable Singularities
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 53-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of hydrodynamic type systems that have three independent and $N\ge 2$ dependent variables and possess a pseudopotential. It turns out that systems having a pseudopotential with movable singularities can be described by some functional equation. We find all solutions of this equation, which permits constructing interesting examples of integrable systems of hydrodynamic type for arbitrary $N$.
Keywords: integrable (2+1)-dimensional hydrodynamic type system, pseudopotential with movable singularities.
@article{FAA_2008_42_3_a4,
     author = {A. V. Odesskii and V. V. Sokolov},
     title = {On {(2+1)-Dimensional} {Hydrodynamic} {Type} {Systems} {Possessing} a {Pseudopotential} with {Movable} {Singularities}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {53--62},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a4/}
}
TY  - JOUR
AU  - A. V. Odesskii
AU  - V. V. Sokolov
TI  - On (2+1)-Dimensional Hydrodynamic Type Systems Possessing a Pseudopotential with Movable Singularities
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 53
EP  - 62
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a4/
LA  - ru
ID  - FAA_2008_42_3_a4
ER  - 
%0 Journal Article
%A A. V. Odesskii
%A V. V. Sokolov
%T On (2+1)-Dimensional Hydrodynamic Type Systems Possessing a Pseudopotential with Movable Singularities
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 53-62
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a4/
%G ru
%F FAA_2008_42_3_a4
A. V. Odesskii; V. V. Sokolov. On (2+1)-Dimensional Hydrodynamic Type Systems Possessing a Pseudopotential with Movable Singularities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 53-62. http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a4/

[1] E. V. Ferapontov, K. R. Khusnutdinova, “Hydrodynamic reductions of multi-dimensional despersionless PDEs: the test for integrability”, J. Math. Phys., 45:6 (2004), 2365–2377 | DOI | MR | Zbl

[2] E. V. Ferapontov, K. R. Khusnutdinova, “The characterization of two-component (2+1)-dimensional integrable systems of hydrodynamic type”, J. Phys. A: Math. Gen., 37:8 (2004), 2949–2963 | DOI | MR | Zbl

[3] E. V. Ferapontov, K. R. Khusnutdinova “The Haantjes tensor and double waves for multi-dimensional systems of hydrodynamic type: a necessary condition for integrability”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462:2068 (2006), 1197–1219 | MR | Zbl

[4] J. Gibbons, S. P. Tsarev, “Reductions of the Benney equations”, Phys. Lett. A, 211:1 (1996), 19–24 | DOI | MR | Zbl

[5] I. M. Krichever, “Metod usredneniya dlya dvumernykh «integriruemykh» uravnenii”, Funkts. analiz i ego pril., 22:3 (1988), 37–52 | MR | Zbl

[6] I. M. Krichever, “The dispersionless Lax equations and topological minimal models”, Comm. Math. Phys., 143:2 (1992), 415–429 | DOI | MR | Zbl

[7] I. M. Krichever, “The $\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories”, Comm. Pure Appl. Math., 47:4 (1994), 437–475 | DOI | MR | Zbl

[8] V. E. Zakharov, “Dispersionless limit of integrable systems in 2+1 dimensions”, Singular Limits of Dispersive Waves, Plenum Press, New York, 1994, 165–174 | DOI | MR | Zbl

[9] S. P. Tsarev, “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR, ser. matem., 54:5 (1990), 1048–1068 | MR | Zbl

[10] S. V. Manakov, P. M. Santini, “Zadacha Koshi na ploskosti dlya bezdispersionnogo uravneniya Kadomtseva–Petviashvili”, Pisma v ZhETF, 83:10 (2006), 462–466

[11] S. V. Manakov, P. M. Santini, “Inverse scattering problem for vector fields and the Cauchy problem for the heavenly equation”, Phys. Lett. A, 359:6 (2006), 613–619 | DOI | MR | Zbl

[12] J. Haantjes, “On $X_m$-forming sets of eigenvectors”, Indag. Math., 17 (1955), 158–162 | DOI | MR

[13] Z. Peradzyński, “Nonlinear planar $k$-waves and Riemann invariants”, Bull. Acad. Polon. Sci. Sr. Sci. Tech., 19 (1971), 625–632 | MR | Zbl