New Simple Modular Lie Superalgebras as Generalized Prolongs
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 1-9
Voir la notice de l'article provenant de la source Math-Net.Ru
Over algebraically closed fields of characteristic $p>2$, — prolongations of simple finite dimensional Lie algebras and Lie superalgebras with Cartan matrix are studied for certain simplest gradings of these algebras. We discover several new simple Lie superalgebras, serial and exceptional, including super versions of Brown and Melikyan algebras, and thus corroborate the super analog of the Kostrikin–Shafarevich conjecture. Simple Lie superalgebras with $2\times 2$ Cartan matrices are classified.
Mots-clés :
Cartan prolong
Keywords: Lie superalgebra.
Keywords: Lie superalgebra.
@article{FAA_2008_42_3_a0,
author = {S. Bouarroudj and P. Ya. Grozman and D. A. Leites},
title = {New {Simple} {Modular} {Lie} {Superalgebras} as {Generalized} {Prolongs}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--9},
publisher = {mathdoc},
volume = {42},
number = {3},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a0/}
}
TY - JOUR AU - S. Bouarroudj AU - P. Ya. Grozman AU - D. A. Leites TI - New Simple Modular Lie Superalgebras as Generalized Prolongs JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2008 SP - 1 EP - 9 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a0/ LA - ru ID - FAA_2008_42_3_a0 ER -
S. Bouarroudj; P. Ya. Grozman; D. A. Leites. New Simple Modular Lie Superalgebras as Generalized Prolongs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 1-9. http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a0/