Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2008_42_3_a0, author = {S. Bouarroudj and P. Ya. Grozman and D. A. Leites}, title = {New {Simple} {Modular} {Lie} {Superalgebras} as {Generalized} {Prolongs}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--9}, publisher = {mathdoc}, volume = {42}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a0/} }
TY - JOUR AU - S. Bouarroudj AU - P. Ya. Grozman AU - D. A. Leites TI - New Simple Modular Lie Superalgebras as Generalized Prolongs JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2008 SP - 1 EP - 9 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a0/ LA - ru ID - FAA_2008_42_3_a0 ER -
S. Bouarroudj; P. Ya. Grozman; D. A. Leites. New Simple Modular Lie Superalgebras as Generalized Prolongs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 1-9. http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a0/
[1] S. Bouarroudj, D. A. Leites, “Simple Lie superalgebras and nonintegrable distributions in characteristic $p$ [Prostye superalgebry Li i neintegriruemye raspredeleniya v kharakteristike $p$]”, Zap. nauchn. sem. POMI, 331, 2006, 15–29 ; http://arxiv.org/abs/math/0606682 | MR | Zbl
[2] S. Bouarroudj, P. Grozman, D. Leites, Cartan matrices and presentations of Elduque and Cunha simple Lie superalgebrasm, http://arxiv.org/abs/math.RT/0611391
[3] S. Bouarroudj, P. Grozman, D. Leites, Cartan matrices and presentations of the exceptional simple Elduque Lie superalgebra, http://arxiv.org/abs/math.RT/0611392
[4] S. Bouarroudj, P. Grozman, D. Leites, Infinitesimal deformations of symmetric simple modular Lie algebras and Lie superalgebras, http://arxiv.org/abs/0807.3054 | MR
[5] S. Bouarroudj, P. Grozman, D. Leites, Classification of simple finite dimensional modular Lie superalgebras with Cartan matrix, http://arxiv.org/abs/0710.5149 | MR
[6] I. Cunha, A. Elduque, An extended Freudenthal magic square in characteristic 3, http://arxiv.org/abs/math.RA/0605379 | MR
[7] I. Cunha, A. Elduque, The extended Freudenthal Magic Square and Jordan algebras, http://arxiv.org/abs/math.RA/0608191 | MR
[8] A. Elduque, “New simple Lie superalgebras in characteristic 3”, J. Algebra, 296:1 (2006), 196–233 | DOI | MR | Zbl
[9] A. Elduque, Some new simple modular Lie superalgebras, http://arxiv.org/abs/math.RA/0512654 | MR
[10] W. Fulton, J. Harris, Representation theory. A first course, Graduate Texts in Math., 129, Springer-Verlag, New York, 1991 | MR | Zbl
[11] P. Grozman, SuperLie, http://www.equaonline.com/math/SuperLie
[12] P. Grozman, D. Leites, “Defining relations for classical Lie superalgebras with Cartan matrix”, Czech. J. Phys., 51:1 (2001), 1–22 ; http://arxiv.org/abs/hep-th/9702073 | DOI | MR
[13] P. Grozman, D. Leites, “Structures of $G(2)$ type and nonintegrable distributions in characteristic $p$”, Lett. Math. Phys., 74:3 (2005), 229–262 ; http://arxiv.org/abs/math.RT/0509400 | DOI | MR | Zbl
[14] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl
[15] A. I. Kostrikin, I. R. Shafarevich, “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR, ser. matem., 33:2 (1969), 251–322 | MR | Zbl
[16] M. I. Kuznetsov, “The Melikyan algebras as Lie algebras of the type $G_2$”, Comm. Algebra, 19:4 (1991), 1281–1312 | DOI | MR | Zbl
[17] A. Lebedev, Presentations of finite dimensional symmetric simple modular Lie algebras and superalgebras, PhD, Leipzig University, 2008
[18] A. Lebedev, D. Leites (with Appendix by P. Deligne), “On realizations of the Steenrod algebras”, J. Prime Res. Math., 2:1 (2006), 101–112 | MR | Zbl
[19] D. Leites, “Towards classification of simple finite dimensional modular Lie superalgebras in characteristic $p$”, J. Prime Res. Math., 3 (2007), 101–110 ; MPIMiS preprint 132/2006 () www.mis.mpg.de | MR | Zbl
[20] D. Leites, “Superalgebry Li”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 25, VINITI, M., 1984, 3–49 | MR
[21] I. M. Schepochkina, “Kak realizovat algebru Li vektornymi polyami”, TMF, 147:3 (2006), 450–469 ; http://arxiv.org/abs/math.RT/0509472 | DOI | MR
[22] H. Strade, Simple Lie algebras over fields of positive characteristic. I. Structure theory, de Gruyter Expositions in Math., 38, Walter de Gruyter Co., Berlin, 2004 | DOI | MR
[23] F. Viviani, Restricted simple Lie algebras and their infinitesimal deformations, http://arxiv.org/abs/math.RA/0702755
[24] K. Yamaguchi, “Differential systems associated with simple graded Lie algebras”, Progress in differential geometry, Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo, 1993, 413–494 | DOI | MR | Zbl