New Simple Modular Lie Superalgebras as Generalized Prolongs
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 1-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

Over algebraically closed fields of characteristic $p>2$, — prolongations of simple finite dimensional Lie algebras and Lie superalgebras with Cartan matrix are studied for certain simplest gradings of these algebras. We discover several new simple Lie superalgebras, serial and exceptional, including super versions of Brown and Melikyan algebras, and thus corroborate the super analog of the Kostrikin–Shafarevich conjecture. Simple Lie superalgebras with $2\times 2$ Cartan matrices are classified.
Mots-clés : Cartan prolong
Keywords: Lie superalgebra.
@article{FAA_2008_42_3_a0,
     author = {S. Bouarroudj and P. Ya. Grozman and D. A. Leites},
     title = {New {Simple} {Modular} {Lie} {Superalgebras} as {Generalized} {Prolongs}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a0/}
}
TY  - JOUR
AU  - S. Bouarroudj
AU  - P. Ya. Grozman
AU  - D. A. Leites
TI  - New Simple Modular Lie Superalgebras as Generalized Prolongs
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 1
EP  - 9
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a0/
LA  - ru
ID  - FAA_2008_42_3_a0
ER  - 
%0 Journal Article
%A S. Bouarroudj
%A P. Ya. Grozman
%A D. A. Leites
%T New Simple Modular Lie Superalgebras as Generalized Prolongs
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 1-9
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a0/
%G ru
%F FAA_2008_42_3_a0
S. Bouarroudj; P. Ya. Grozman; D. A. Leites. New Simple Modular Lie Superalgebras as Generalized Prolongs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 1-9. http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a0/

[1] S. Bouarroudj, D. A. Leites, “Simple Lie superalgebras and nonintegrable distributions in characteristic $p$ [Prostye superalgebry Li i neintegriruemye raspredeleniya v kharakteristike $p$]”, Zap. nauchn. sem. POMI, 331, 2006, 15–29 ; http://arxiv.org/abs/math/0606682 | MR | Zbl

[2] S. Bouarroudj, P. Grozman, D. Leites, Cartan matrices and presentations of Elduque and Cunha simple Lie superalgebrasm, http://arxiv.org/abs/math.RT/0611391

[3] S. Bouarroudj, P. Grozman, D. Leites, Cartan matrices and presentations of the exceptional simple Elduque Lie superalgebra, http://arxiv.org/abs/math.RT/0611392

[4] S. Bouarroudj, P. Grozman, D. Leites, Infinitesimal deformations of symmetric simple modular Lie algebras and Lie superalgebras, http://arxiv.org/abs/0807.3054 | MR

[5] S. Bouarroudj, P. Grozman, D. Leites, Classification of simple finite dimensional modular Lie superalgebras with Cartan matrix, http://arxiv.org/abs/0710.5149 | MR

[6] I. Cunha, A. Elduque, An extended Freudenthal magic square in characteristic 3, http://arxiv.org/abs/math.RA/0605379 | MR

[7] I. Cunha, A. Elduque, The extended Freudenthal Magic Square and Jordan algebras, http://arxiv.org/abs/math.RA/0608191 | MR

[8] A. Elduque, “New simple Lie superalgebras in characteristic 3”, J. Algebra, 296:1 (2006), 196–233 | DOI | MR | Zbl

[9] A. Elduque, Some new simple modular Lie superalgebras, http://arxiv.org/abs/math.RA/0512654 | MR

[10] W. Fulton, J. Harris, Representation theory. A first course, Graduate Texts in Math., 129, Springer-Verlag, New York, 1991 | MR | Zbl

[11] P. Grozman, SuperLie, http://www.equaonline.com/math/SuperLie

[12] P. Grozman, D. Leites, “Defining relations for classical Lie superalgebras with Cartan matrix”, Czech. J. Phys., 51:1 (2001), 1–22 ; http://arxiv.org/abs/hep-th/9702073 | DOI | MR

[13] P. Grozman, D. Leites, “Structures of $G(2)$ type and nonintegrable distributions in characteristic $p$”, Lett. Math. Phys., 74:3 (2005), 229–262 ; http://arxiv.org/abs/math.RT/0509400 | DOI | MR | Zbl

[14] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl

[15] A. I. Kostrikin, I. R. Shafarevich, “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR, ser. matem., 33:2 (1969), 251–322 | MR | Zbl

[16] M. I. Kuznetsov, “The Melikyan algebras as Lie algebras of the type $G_2$”, Comm. Algebra, 19:4 (1991), 1281–1312 | DOI | MR | Zbl

[17] A. Lebedev, Presentations of finite dimensional symmetric simple modular Lie algebras and superalgebras, PhD, Leipzig University, 2008

[18] A. Lebedev, D. Leites (with Appendix by P. Deligne), “On realizations of the Steenrod algebras”, J. Prime Res. Math., 2:1 (2006), 101–112 | MR | Zbl

[19] D. Leites, “Towards classification of simple finite dimensional modular Lie superalgebras in characteristic $p$”, J. Prime Res. Math., 3 (2007), 101–110 ; MPIMiS preprint 132/2006 () www.mis.mpg.de | MR | Zbl

[20] D. Leites, “Superalgebry Li”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 25, VINITI, M., 1984, 3–49 | MR

[21] I. M. Schepochkina, “Kak realizovat algebru Li vektornymi polyami”, TMF, 147:3 (2006), 450–469 ; http://arxiv.org/abs/math.RT/0509472 | DOI | MR

[22] H. Strade, Simple Lie algebras over fields of positive characteristic. I. Structure theory, de Gruyter Expositions in Math., 38, Walter de Gruyter Co., Berlin, 2004 | DOI | MR

[23] F. Viviani, Restricted simple Lie algebras and their infinitesimal deformations, http://arxiv.org/abs/math.RA/0702755

[24] K. Yamaguchi, “Differential systems associated with simple graded Lie algebras”, Progress in differential geometry, Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo, 1993, 413–494 | DOI | MR | Zbl