Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2008_42_1_a5, author = {E. B. Feigin}, title = {Bosonic {Formulas} for {Affine} {Branching} {Functions}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {63--77}, publisher = {mathdoc}, volume = {42}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a5/} }
E. B. Feigin. Bosonic Formulas for Affine Branching Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 63-77. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a5/
[1] J. Bagger, D. Nemeschansky, S. Yankielowicz, “Virasoro algebras with central charge $c>1$”, Phys. Rev. Lett., 60:5 (1988), 389–392 | DOI | MR
[2] I. N. Bernstein, I. M. Gel'fand, S. I. Gel'fand, “Differential operators on the base affine space and a study of $\mathfrak{g}$-modules”, Lie Groups and Their Representations, Summer school of the Bolyai Janos Math. Soc., ed. Gelfand, Halsted Press, 1975, 21–64 | MR
[3] E. Date, M. Jimbo, A. Kuniba, T. Miwa, M. Okado, “Exactly solvable SOS models: local heights probabilities and theta function identities”, Nucl. Phys. B, 290:2 (1987), 231–273 ; “Exactly solvable SOS models II: proof of the star-triangle relation and combinatorial identities”, Conformal Field Theory and Solvable Lattice models (Kyoto, 1986), Adv. Stud. Pure Math., 16, Academic Press, Boston, MA, 1988, 17–122 | DOI | MR | Zbl | DOI | MR
[4] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997 | DOI | MR
[5] E. Feigin, Infinite fusion products and $\widehat{\mathfrak{sl}_2}$ cosets, http://xxx.lanl.gov/abs/math.QA/0603226
[6] O. Foda, M. Okado, S. O. Warnaar, “A proof of polynomial identities of type $\widehat{\mathfrak{sl}(n)_1}\otimes\widehat{\mathfrak{sl}(n)_1}/\widehat{\mathfrak{sl}(n)_2}$”, J. Math. Phys., 37 (1996), 965–986 | DOI | MR | Zbl
[7] P. Goddard, A. Kent, D. Olive, “Unitary representations of the Virasoro and super-Virasoro algebras”, Comm. Math. Phys., 103:1 (1986), 105–119 | DOI | MR | Zbl
[8] H. Garland, J. Lepowsky, “Lie algebra homology and the Macdonald–Kac formulas”, Invent. Math., 34 (1976), 37–76 | DOI | MR | Zbl
[9] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl
[10] D. Kastor, E. Martinec, Z. Qiu, “Current algebra and conformal decrete series”, Phys. Lett. B, 200:4 (1988), 434–440 | DOI | MR
[11] S. Kumar, Kac–Moody Groups, Their Flag Varieties and Representation Theory, Progress in Mathematics, 204, Birkhäuser, Boston, MA, 2002 | MR | Zbl
[12] F. Ravanini, “An infinite class of new conformal field theories with extended algebras”, Modern. Phys. Lett. A, 3:4 (1988), 397–412 | DOI | MR
[13] A. Rocha-Caridi, “Vacuum vector representations of the Virasoro algebra”, Vertex Operators in Mathematics and Physics (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., 3, Springer-Verlag, New York, 1985, 451–473 | MR
[14] A. Schilling, “Multinomials and polynomial bosonic forms for the branching functions of the $\widehat{\mathfrak{su}}(2)_M\times \widehat{\mathfrak{su}}(2)_N/\widehat{\mathfrak{su}}(2)_{M+N}$ conformal coset models”, Nucl. Phys. B, 467 (1996), 247–271 | DOI | MR | Zbl
[15] A. Schilling, “Polynomial fermionic forms for the branching functions of the rational coset conformal field theories $\widehat{\mathfrak{su}}(2)_M\times \widehat{\mathfrak{su}}(2)_N/\widehat{\mathfrak{su}}(2)_{M+N}$”, Nucl. Phys. B, 459 (1996), 393–436 | DOI | MR | Zbl
[16] A. Schilling, M. Shimozono, “Fermionic formulas for level-restricted generalized Kostka polynomials and coset branching functions”, Comm. Math. Phys., 220:1 (2001), 105–164 | DOI | MR | Zbl