Bosonic Formulas for Affine Branching Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 63-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we derive two bosonic (alternating sign) formulas for branching functions of affine Kac–Moody Lie algebras $\mathfrak{g}$. Both formulas are expressed in terms of the Weyl group and string functions of $\mathfrak{g}$.
Keywords: Kac–Moody algebra, branching function, BGG-resolution.
@article{FAA_2008_42_1_a5,
     author = {E. B. Feigin},
     title = {Bosonic {Formulas} for {Affine} {Branching} {Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {63--77},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a5/}
}
TY  - JOUR
AU  - E. B. Feigin
TI  - Bosonic Formulas for Affine Branching Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 63
EP  - 77
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a5/
LA  - ru
ID  - FAA_2008_42_1_a5
ER  - 
%0 Journal Article
%A E. B. Feigin
%T Bosonic Formulas for Affine Branching Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 63-77
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a5/
%G ru
%F FAA_2008_42_1_a5
E. B. Feigin. Bosonic Formulas for Affine Branching Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 63-77. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a5/

[1] J. Bagger, D. Nemeschansky, S. Yankielowicz, “Virasoro algebras with central charge $c>1$”, Phys. Rev. Lett., 60:5 (1988), 389–392 | DOI | MR

[2] I. N. Bernstein, I. M. Gel'fand, S. I. Gel'fand, “Differential operators on the base affine space and a study of $\mathfrak{g}$-modules”, Lie Groups and Their Representations, Summer school of the Bolyai Janos Math. Soc., ed. Gelfand, Halsted Press, 1975, 21–64 | MR

[3] E. Date, M. Jimbo, A. Kuniba, T. Miwa, M. Okado, “Exactly solvable SOS models: local heights probabilities and theta function identities”, Nucl. Phys. B, 290:2 (1987), 231–273 ; “Exactly solvable SOS models II: proof of the star-triangle relation and combinatorial identities”, Conformal Field Theory and Solvable Lattice models (Kyoto, 1986), Adv. Stud. Pure Math., 16, Academic Press, Boston, MA, 1988, 17–122 | DOI | MR | Zbl | DOI | MR

[4] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997 | DOI | MR

[5] E. Feigin, Infinite fusion products and $\widehat{\mathfrak{sl}_2}$ cosets, http://xxx.lanl.gov/abs/math.QA/0603226

[6] O. Foda, M. Okado, S. O. Warnaar, “A proof of polynomial identities of type $\widehat{\mathfrak{sl}(n)_1}\otimes\widehat{\mathfrak{sl}(n)_1}/\widehat{\mathfrak{sl}(n)_2}$”, J. Math. Phys., 37 (1996), 965–986 | DOI | MR | Zbl

[7] P. Goddard, A. Kent, D. Olive, “Unitary representations of the Virasoro and super-Virasoro algebras”, Comm. Math. Phys., 103:1 (1986), 105–119 | DOI | MR | Zbl

[8] H. Garland, J. Lepowsky, “Lie algebra homology and the Macdonald–Kac formulas”, Invent. Math., 34 (1976), 37–76 | DOI | MR | Zbl

[9] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl

[10] D. Kastor, E. Martinec, Z. Qiu, “Current algebra and conformal decrete series”, Phys. Lett. B, 200:4 (1988), 434–440 | DOI | MR

[11] S. Kumar, Kac–Moody Groups, Their Flag Varieties and Representation Theory, Progress in Mathematics, 204, Birkhäuser, Boston, MA, 2002 | MR | Zbl

[12] F. Ravanini, “An infinite class of new conformal field theories with extended algebras”, Modern. Phys. Lett. A, 3:4 (1988), 397–412 | DOI | MR

[13] A. Rocha-Caridi, “Vacuum vector representations of the Virasoro algebra”, Vertex Operators in Mathematics and Physics (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., 3, Springer-Verlag, New York, 1985, 451–473 | MR

[14] A. Schilling, “Multinomials and polynomial bosonic forms for the branching functions of the $\widehat{\mathfrak{su}}(2)_M\times \widehat{\mathfrak{su}}(2)_N/\widehat{\mathfrak{su}}(2)_{M+N}$ conformal coset models”, Nucl. Phys. B, 467 (1996), 247–271 | DOI | MR | Zbl

[15] A. Schilling, “Polynomial fermionic forms for the branching functions of the rational coset conformal field theories $\widehat{\mathfrak{su}}(2)_M\times \widehat{\mathfrak{su}}(2)_N/\widehat{\mathfrak{su}}(2)_{M+N}$”, Nucl. Phys. B, 459 (1996), 393–436 | DOI | MR | Zbl

[16] A. Schilling, M. Shimozono, “Fermionic formulas for level-restricted generalized Kostka polynomials and coset branching functions”, Comm. Math. Phys., 220:1 (2001), 105–164 | DOI | MR | Zbl