The PRV-Formula for Tensor Product Decompositions and Its Applications
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 53-62
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a semisimple algebraic group, $V$ a simple finite-dimensional self-dual $G$-module, and $W$ an arbitrary simple finite-dimensional $G$-module. Using the triple multiplicity formula due to Parthasarathy, Ranga Rao, and Varadarajan, we describe the multiplicities of $W$ in
the symmetric and exterior squares of $V$ in terms of the action of a maximum-length element of the Weyl group on some subspace in $V^T$, where $T\subset G$ is a maximal torus. By way of application, we consider the cases in which $V$ is the adjoint, little adjoint, or, more generally, a small $G$-module. We also obtain a general upper bound for triple multiplicities in terms of Kostant's partition function.
Keywords:
semisimple Lie algebra, highest weight, triple multiplicity, partition function.
@article{FAA_2008_42_1_a4,
author = {D. I. Panyushev and O. S. Yakimova},
title = {The {PRV-Formula} for {Tensor} {Product} {Decompositions} and {Its} {Applications}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {53--62},
publisher = {mathdoc},
volume = {42},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a4/}
}
TY - JOUR AU - D. I. Panyushev AU - O. S. Yakimova TI - The PRV-Formula for Tensor Product Decompositions and Its Applications JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2008 SP - 53 EP - 62 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a4/ LA - ru ID - FAA_2008_42_1_a4 ER -
D. I. Panyushev; O. S. Yakimova. The PRV-Formula for Tensor Product Decompositions and Its Applications. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 53-62. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a4/