The PRV-Formula for Tensor Product Decompositions and Its Applications
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 53-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a semisimple algebraic group, $V$ a simple finite-dimensional self-dual $G$-module, and $W$ an arbitrary simple finite-dimensional $G$-module. Using the triple multiplicity formula due to Parthasarathy, Ranga Rao, and Varadarajan, we describe the multiplicities of $W$ in the symmetric and exterior squares of $V$ in terms of the action of a maximum-length element of the Weyl group on some subspace in $V^T$, where $T\subset G$ is a maximal torus. By way of application, we consider the cases in which $V$ is the adjoint, little adjoint, or, more generally, a small $G$-module. We also obtain a general upper bound for triple multiplicities in terms of Kostant's partition function.
Keywords: semisimple Lie algebra, highest weight, triple multiplicity, partition function.
@article{FAA_2008_42_1_a4,
     author = {D. I. Panyushev and O. S. Yakimova},
     title = {The {PRV-Formula} for {Tensor} {Product} {Decompositions} and {Its} {Applications}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {53--62},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a4/}
}
TY  - JOUR
AU  - D. I. Panyushev
AU  - O. S. Yakimova
TI  - The PRV-Formula for Tensor Product Decompositions and Its Applications
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 53
EP  - 62
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a4/
LA  - ru
ID  - FAA_2008_42_1_a4
ER  - 
%0 Journal Article
%A D. I. Panyushev
%A O. S. Yakimova
%T The PRV-Formula for Tensor Product Decompositions and Its Applications
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 53-62
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a4/
%G ru
%F FAA_2008_42_1_a4
D. I. Panyushev; O. S. Yakimova. The PRV-Formula for Tensor Product Decompositions and Its Applications. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 53-62. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a4/

[1] A. D. Berenstein, A. V. Zelevinsky, “Tensor product multiplicities and convex polytopes in partition space”, J. Geometry and Physics, 5 (1988), 453–472 | DOI | MR | Zbl

[2] A. Broer, “The sum of generalized exponents and Chevalley's restriction theorem”, Indag. Math., 6 (1995), 385–396 | DOI | MR | Zbl

[3] V. G. Kac, M. Wakimoto, “Unitarizable highest weight representations of the Virasoro, Neveu–Schwarz and Ramond algebras”, Conformal Groups and Related Symmetries: Physical Results and Mathematical Background (Clausthal-Zellerfeld, 1985), Lecture Notes in Phys., 261, Springer-Verlag, Berlin, 1986, 345–371 | DOI | MR

[4] P. Littelmann, “On spherical double cones”, J. Algebra, 166:1 (1994), 142–157 | DOI | MR | Zbl

[5] D. Panyushev, “Complexity and rank of double cones and tensor product decompositions”, Comment. Math. Helv., 68:3 (1993), 455–468 | DOI | MR | Zbl

[6] K. R. Parthasarathy, R. Ranga Rao, V. S. Varadarajan, “Representations of complex semisimple Lie groups and Lie algebras”, Ann. of Math., 85 (1967), 383–429 | DOI | MR | Zbl

[7] E. Sommers, “Conjectures for small representations of the exceptional groups”, Comm. Math. Univ. St Paul., 49:1 (2000), 101–104 | MR | Zbl

[8] R. Steinberg, “A general Clebsch–Gordan theorem”, Bull. Amer. Math. Soc., 67 (1961), 406–407 | DOI | MR | Zbl

[9] J. R. Stembridge, “Multiplicity-free products and restrictions of Weyl characters”, Represent. Theory (electronic), 7 (2003), 404–439 | DOI | MR | Zbl

[10] E. B. Vinberg, V. V. Gorbatsevich, A. L. Onischik, Gruppy i algebry Li-3, Itogi nauki i tekhniki, Sovremennye problemy matematiki, Fundamentalnye napravleniya, 41, VINITI, M., 1990