Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2008_42_1_a3, author = {O. I. Mokhov}, title = {The {Classification} of {Nonsingular} {Multidimensional} {Dubrovin--Novikov} {Brackets}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {39--52}, publisher = {mathdoc}, volume = {42}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a3/} }
O. I. Mokhov. The Classification of Nonsingular Multidimensional Dubrovin--Novikov Brackets. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 39-52. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a3/
[1] B. A. Dubrovin, S. P. Novikov, “O skobkakh Puassona gidrodinamicheskogo tipa”, Dokl. AN SSSR, 279:2 (1984), 294–297 | MR | Zbl
[2] B. A. Dubrovin, S. P. Novikov, “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, Dokl. AN SSSR, 270:4 (1983), 781–785 | MR | Zbl
[3] S. P. Tsarev, “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR, ser. matem., 54:5 (1990), 1048–1068 | MR | Zbl
[4] B. A. Dubrovin, S. P. Novikov, “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl
[5] E. V. Ferapontov, K. R. Khusnutdinova, “On the integrability of ($2+1$)-dimensional quasilinear systems”, Comm. Math. Phys., 248 (2004), 187–206 | DOI | MR | Zbl
[6] O. I. Mokhov, “O skobkakh Puassona tipa Dubrovina–Novikova (DN-skobki)”, Funkts. analiz i ego pril., 22:4 (1988), 92–93 | MR | Zbl
[7] A. A.Balinskii, S. P. Novikov, “Skobki Puassona gidrodinamicheskogo tipa, frobeniusovy algebry i algebry Li”, Dokl. AN SSSR, 283:5 (1985), 1036–1039 | MR | Zbl
[8] O. I. Mokhov, “Soglasovannye i pochti soglasovannye psevdorimanovy metriki”, Funkts. analiz i ego pril., 35:2 (2001), 24–36 ; http://xxx.arxiv.org/abs/math/0005051 | DOI | MR | Zbl
[9] O. I. Mokhov, “Simplekticheskie i puassonovy struktury na prostranstvakh petel gladkikh mnogoobrazii i integriruemye sistemy”, UMN, 53:3 (1998), 85–192 | DOI | MR | Zbl
[10] I. Dorfman, Dirac structures and integrability of nonlinear evolution equations, John Wiley Sons, Chichester, 1993 | MR
[11] N. I. Grinberg, “O skobkakh Puassona gidrodinamicheskogo tipa s vyrozhdennoi metrikoi”, UMN, 40:4 (1985), 217–218 | MR | Zbl
[12] O. I. Mokhov, “Hamiltonian systems of hydrodynamic type and constant curvature metrics”, Phys. Lett. A, 166:3, 4 (1992), 215–216 | DOI | MR
[13] I. M. Gelfand, I. Ya. Dorfman, “Gamiltonovy operatory i beskonechnomernye algebry Li”, Funkts. analiz i ego pril., 15:3 (1981), 23–40 | MR | Zbl
[14] F. Magri, “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl
[15] O. I. Mokhov, “Compatible flat metrics”, J. Appl. Math., 2:7 (2002), 337–370 ; http://xxx.arxiv.org/abs/math/0201224 | DOI | MR | Zbl
[16] B. Dubrovin, “Geometry of 2D topological field theories”, Lecture Notes in Math., 1620, 1996, 120–348 | DOI | MR | Zbl
[17] O. I. Mokhov, “Ob integriruemosti uravnenii dlya neosobykh par soglasovannykh ploskikh metrik”, Teor. matem. fizika, 130:2 (2002), 233–250 ; http://xxx.arxiv.org/abs/math/0005081 | DOI | MR | Zbl
[18] O. I. Mokhov, “Ploskie puchki metrik i integriruemye reduktsii uravnenii Lame”, UMN, 56:2 (2001), 221–222 | DOI | MR | Zbl
[19] E. V. Ferapontov, “Compatible Poisson brackets of hydrodynamic type”, J. Phys. A: Math. Gen., 34 (2001), 2377–2388 ; http://xxx.arxiv.org/abs/math/0005221 | DOI | MR | Zbl
[20] A. Nijenhuis, “$X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 13:2 (1951), 200–212 | DOI | MR | Zbl