The Classification of Nonsingular Multidimensional Dubrovin--Novikov Brackets
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 39-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the well-known Dubrovin–Novikov problem posed as long ago as in 1984 in connection with the Hamiltonian theory of systems of hydrodynamic type, namely, the classification problem for multidimensional Poisson brackets of hydrodynamic type, is solved. In contrast to the one-dimensional case, in the general case, a nondegenerate multidimensional Poisson bracket of hydrodynamic type cannot be reduced to a constant form by a local change of coordinates. Generally speaking, such Poisson brackets are generated by nontrivial canonical special infinite-dimensional Lie algebras. In this paper, we obtain a classification of all nonsingular nondegenerate multidimensional Poisson brackets of hydrodynamic type for any number $N$ of components and for any dimension $n$ by differential-geometric methods. A key role in the solution of this problem is played by the theory of compatible metrics earlier constructed by the present author.
Keywords: multidimensional Dubrovin–Novikov bracket, obstruction tensor, infinite-dimensional Lie algebra, compatible metrics, flat pencil of metrics, system of hydrodynamic type
Mots-clés : multidimensional Poisson bracket of hydrodynamic type, compatible Poisson brackets.
@article{FAA_2008_42_1_a3,
     author = {O. I. Mokhov},
     title = {The {Classification} of {Nonsingular} {Multidimensional} {Dubrovin--Novikov} {Brackets}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {39--52},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a3/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - The Classification of Nonsingular Multidimensional Dubrovin--Novikov Brackets
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 39
EP  - 52
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a3/
LA  - ru
ID  - FAA_2008_42_1_a3
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T The Classification of Nonsingular Multidimensional Dubrovin--Novikov Brackets
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 39-52
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a3/
%G ru
%F FAA_2008_42_1_a3
O. I. Mokhov. The Classification of Nonsingular Multidimensional Dubrovin--Novikov Brackets. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 39-52. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a3/

[1] B. A. Dubrovin, S. P. Novikov, “O skobkakh Puassona gidrodinamicheskogo tipa”, Dokl. AN SSSR, 279:2 (1984), 294–297 | MR | Zbl

[2] B. A. Dubrovin, S. P. Novikov, “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, Dokl. AN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[3] S. P. Tsarev, “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR, ser. matem., 54:5 (1990), 1048–1068 | MR | Zbl

[4] B. A. Dubrovin, S. P. Novikov, “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl

[5] E. V. Ferapontov, K. R. Khusnutdinova, “On the integrability of ($2+1$)-dimensional quasilinear systems”, Comm. Math. Phys., 248 (2004), 187–206 | DOI | MR | Zbl

[6] O. I. Mokhov, “O skobkakh Puassona tipa Dubrovina–Novikova (DN-skobki)”, Funkts. analiz i ego pril., 22:4 (1988), 92–93 | MR | Zbl

[7] A. A.Balinskii, S. P. Novikov, “Skobki Puassona gidrodinamicheskogo tipa, frobeniusovy algebry i algebry Li”, Dokl. AN SSSR, 283:5 (1985), 1036–1039 | MR | Zbl

[8] O. I. Mokhov, “Soglasovannye i pochti soglasovannye psevdorimanovy metriki”, Funkts. analiz i ego pril., 35:2 (2001), 24–36 ; http://xxx.arxiv.org/abs/math/0005051 | DOI | MR | Zbl

[9] O. I. Mokhov, “Simplekticheskie i puassonovy struktury na prostranstvakh petel gladkikh mnogoobrazii i integriruemye sistemy”, UMN, 53:3 (1998), 85–192 | DOI | MR | Zbl

[10] I. Dorfman, Dirac structures and integrability of nonlinear evolution equations, John Wiley Sons, Chichester, 1993 | MR

[11] N. I. Grinberg, “O skobkakh Puassona gidrodinamicheskogo tipa s vyrozhdennoi metrikoi”, UMN, 40:4 (1985), 217–218 | MR | Zbl

[12] O. I. Mokhov, “Hamiltonian systems of hydrodynamic type and constant curvature metrics”, Phys. Lett. A, 166:3, 4 (1992), 215–216 | DOI | MR

[13] I. M. Gelfand, I. Ya. Dorfman, “Gamiltonovy operatory i beskonechnomernye algebry Li”, Funkts. analiz i ego pril., 15:3 (1981), 23–40 | MR | Zbl

[14] F. Magri, “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[15] O. I. Mokhov, “Compatible flat metrics”, J. Appl. Math., 2:7 (2002), 337–370 ; http://xxx.arxiv.org/abs/math/0201224 | DOI | MR | Zbl

[16] B. Dubrovin, “Geometry of 2D topological field theories”, Lecture Notes in Math., 1620, 1996, 120–348 | DOI | MR | Zbl

[17] O. I. Mokhov, “Ob integriruemosti uravnenii dlya neosobykh par soglasovannykh ploskikh metrik”, Teor. matem. fizika, 130:2 (2002), 233–250 ; http://xxx.arxiv.org/abs/math/0005081 | DOI | MR | Zbl

[18] O. I. Mokhov, “Ploskie puchki metrik i integriruemye reduktsii uravnenii Lame”, UMN, 56:2 (2001), 221–222 | DOI | MR | Zbl

[19] E. V. Ferapontov, “Compatible Poisson brackets of hydrodynamic type”, J. Phys. A: Math. Gen., 34 (2001), 2377–2388 ; http://xxx.arxiv.org/abs/math/0005221 | DOI | MR | Zbl

[20] A. Nijenhuis, “$X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 13:2 (1951), 200–212 | DOI | MR | Zbl