Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2008_42_1_a1, author = {A. M. Vershik and M. I. Graev}, title = {Integral {Models} of {Representations} of {Current} {Groups}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {22--32}, publisher = {mathdoc}, volume = {42}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a1/} }
A. M. Vershik; M. I. Graev. Integral Models of Representations of Current Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 22-32. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a1/
[1] A. M. Vershik, M. I. Graev, “Struktura dopolnitelnykh serii i osobykh predstavlenii grupp $O(n,1)$ i $U(n,1)$”, UMN, 61:5 (2006), 3–88 | DOI | MR
[2] M. I. Graev, A. M. Vershik, “The basic representation of the current group $O(n,1)^X $ in the $L^2$ space over the generalized Lebesgue measure”, Indag. Math., 16:3/4 (2005), 499–529 | DOI | MR | Zbl
[3] I. M. Gelfand, M. I. Graev, A. M. Vershik, “Models of representations of current groups”, Representations of Lie groups and Lie algebras, Akad. Kiadó, Budapest, 1985, 121–179 | MR
[4] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Neprivodimye predstavleniya gruppy $G^X$ i kogomologii”, Funkts. analiz i ego pril., 8:2 (1974), 67–69 | MR | Zbl
[5] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Predstavleniya gruppy $SL(2,R)$, gde $R$ — koltso funktsii”, UMN, 28:5 (1973), 83–128 | MR | Zbl
[6] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Kommutativnaya model predstavleniya gruppy tokov $SL(2,\mathbb{R})^X$, svyazannaya s unipotentnoi podgruppoi”, Funkts. analiz i ego pril., 17:2 (1983), 70–72 | MR | Zbl
[7] A. M. Vershik, “Suschestvuet li mera Lebega v beskonechnomernom prostranstve?”, Analiz i osobennosti. Chast 2, K 70-letiyu so dnya rozhdeniya akademika Vladimira Igorevicha Arnolda, Tr. MIAN, 259, Nauka, M., 2007, 256–281
[8] A. M. Vershik, S. I. Karpushev, “Kogomologii grupp v unitarnykh predstavleniyakh, okrestnost edinitsy i uslovno polozhitelno opredelennye funktsii”, Matem. sb., 119:4 (1982), 521–533 | MR | Zbl
[9] A. M. Vershik, N. V. Tsilevich, “Fokovskie faktorizatsii i razlozheniya prostranstva $L^2$ nad obschimi protsessami Levi”, UMN, 58:3 (351) (2003), 3–50 | DOI | MR | Zbl
[10] N. Tsilevich, A. Vershik, M. Yor, “An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process”, J. Funct. Anal., 185:1 (2001), 274–296 | DOI | MR | Zbl
[11] H. Araki, “Factorisable representations of the current algebra”, Publ. RIMS Kyoto Univ. Ser. A, 5:3 (1970), 361–422 | DOI | MR | Zbl
[12] A. M. Perelomov, Obobschennye kogerentnye sostoyaniya i ikh primeneniya, M., Nauka, 1987 | MR
[13] G. Beitmen, L. Erdeii, Vysshie transtsendentnye funktsii, t. 2, Fizmatgiz, M., 1974