Integral Models of Representations of Current Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 22-32

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a new construction of nonlocal representations of the current group. Instead of the Fock space, which is usually used in this situation, we consider the direct integral of countable tensor products of representations over the trajectories of some stochastic process. The construction substantially uses the invariance of the so-called infinite-dimensional Lebesgue measure.
Keywords: current group, summable representation, integral of tensor products.
@article{FAA_2008_42_1_a1,
     author = {A. M. Vershik and M. I. Graev},
     title = {Integral {Models} of {Representations} of {Current} {Groups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {22--32},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - M. I. Graev
TI  - Integral Models of Representations of Current Groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 22
EP  - 32
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a1/
LA  - ru
ID  - FAA_2008_42_1_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%A M. I. Graev
%T Integral Models of Representations of Current Groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 22-32
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a1/
%G ru
%F FAA_2008_42_1_a1
A. M. Vershik; M. I. Graev. Integral Models of Representations of Current Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 22-32. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a1/