Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 1-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following method for integrating the Cauchy problem for a Toda lattice on the half-line is well known: to a solution $u(t)$, $t\in[0,\infty)$, of the problem, one assigns a self-adjoint semi-infinite Jacobi matrix $J(t)$ whose spectral measure $d\rho(\lambda;t)$ undergoes simple evolution in time $t$. The solution of the Cauchy problem goes as follows. One writes out the spectral measure $d\rho(\lambda;0)$ for the initial value $u(0)$ of the solution and the corresponding Jacobi matrix $J(0)$ and then computes the time evolution $d\rho(\lambda;t)$ of this measure. Using the solution of the inverse spectral problem, one reconstructs the Jacobi matrix $J(t)$ from $d\rho(\lambda;t)$ and hence finds the desired solution $u(t)$. In the present paper, this approach is generalized to the case in which the role of $J(t)$ is played by a block Jacobi matrix generating a normal operator in the orthogonal sum of finite-dimensional spaces with spectral measure $d\rho(\zeta;t)$ defined on the complex plane. Some recent results on the spectral theory of these normal operators permit one to use the integration method described above for a rather wide class of differential-difference nonlinear equations replacing the Toda lattice.
Keywords: block Jacobi matrix, generalized eigenvector, spectral representation, Toda lattice.
@article{FAA_2008_42_1_a0,
     author = {Yu. M. Berezanskii and A. A. Mokhon'ko},
     title = {Integration of {Some} {Differential-Difference} {Nonlinear} {Equations} {Using} the {Spectral} {Theory} of {Normal} {Block} {Jacobi} {Matrices}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a0/}
}
TY  - JOUR
AU  - Yu. M. Berezanskii
AU  - A. A. Mokhon'ko
TI  - Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 1
EP  - 21
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a0/
LA  - ru
ID  - FAA_2008_42_1_a0
ER  - 
%0 Journal Article
%A Yu. M. Berezanskii
%A A. A. Mokhon'ko
%T Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 1-21
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a0/
%G ru
%F FAA_2008_42_1_a0
Yu. M. Berezanskii; A. A. Mokhon'ko. Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a0/

[1] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl

[2] M. Kac, P. van Moerbeke, “On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices”, Adv. Math., 16:2 (1975), 160–169 | DOI | MR | Zbl

[3] J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16:2 (1975), 197–220 | DOI | MR | Zbl

[4] Yu. M. Berezansky, The integration of semi-infinite Toda chain by means of inverse spectral problem, Preprint 84.79 of Inst. Math., Acad. Sci. Ukrain., Kiev, 1984 | MR

[5] Yu. M. Berezanskii, “Integrirovanie nelineinykh raznostnykh uravnenii metodom obratnoi spektralnoi zadachi”, Dokl. AN SSSR, 281:1 (1985), 16–19 | MR | Zbl

[6] Yu. M. Berezanski, “The integration of semi-infinite Toda chain by means of inverse spectral problem”, Rep. Math. Phys., 24:1 (1986), 21–47 | DOI | MR | Zbl

[7] Yu. M. Berezansky, M. E. Dudkin, “The direct and inverse spectral problems for the block Jacobi type unitary matrices”, Methods Funct. Anal. Topology, 11:4 (2005), 327–345 | MR | Zbl

[8] Yu. M. Berezansky, M. E. Dudkin, “The complex moment problem and direct and inverse spectral problems for the block Jacobi type bounded normal matrices”, Methods Funct. Anal. Topology, 12:1 (2006), 1–31 | MR | Zbl

[9] M. G. Krein, “Beskonechnye $J$-matritsy i matrichnaya problema momentov”, Dokl. AN SSSR, 69:2 (1949), 125–128 | MR | Zbl

[10] Yu. M. Berezanskii, “Razlozhenie po sobstvennym funktsiyam uravnenii v chastnykh raznostyakh vtorogo poryadka”, Trudy Mosk. matem. ob-va, 5, 1956, 203–268 | MR | Zbl

[11] V. G. Tarnopolskii, “Pro samospryazhenist riznitsevikh operatoriv z operatornimi koefitsi$\epsilon$ntami”, DAN URSR, 11 (1959), 1189–1192 | MR

[12] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR | Zbl

[13] Yu. M. Berezanskii, M. I. Gekhtman, “Obratnaya zadacha spektralnogo analiza i neabelevy tsepochki nelineinykh uravnenii”, Ukr. matem. zh., 42:6 (1990), 730–747 | MR | Zbl

[14] M. I. Gekhtman, “Integrirovanie neabelevykh tsepochek tipa Tody”, Funkts. analiz i ego pril., 24:3 (1990), 72–73 | MR | Zbl

[15] L. Faybusovich, M. Gekhtman, “Elementary Toda orbits and integrable lattices”, J. Math. Phys., 41:5 (2000), 2905–2921 | DOI | MR | Zbl

[16] Yu. M. Berezanskii, “Pryamaya i obratnaya spektralnye zadachi dlya yakobieva polya”, Algebra i analiz, 9:6 (1997), 38–61 | MR | Zbl

[17] Yu. L. Kishakevich, “Spektralnaya funktsiya tipa Marchenko raznostnogo operatora chetnogo poryadka”, Matem. zametki, 11:4 (1972), 437–446 | MR | Zbl

[18] Yu. L. Kishakevich, “Spektralnaya funktsiya tipa Marchenko beskonechnoi sistemy raznostnykh uravnenii”, Teoriya funktsii, funkts. analiz i ikh prilozheniya, 16 (1972), 59–68 | MR | Zbl

[19] I. M. Krichever, “Periodicheskaya neabeleva tsepochka Toda i ee dvumernoe obobschenie”, Prilozhenie k state: B. A. Dubrovin, “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 72–77 | MR | Zbl

[20] M. Kac, P. van Moerbeke, “On some periodic Toda lattices”, Proc. Nat. Acad. Sci. USA, 72:4 (1975), 1627–1629 | DOI | MR | Zbl

[21] S. V. Manakov, “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, Zhurn. eksp. teoret. fiz., 67:2 (1974), 543–555 | MR

[22] H. Flaschka, “On the Toda lattice. I”, Phys. Rev., B, 9 (1974), 1924–1925 | DOI | MR | Zbl

[23] H. Flaschka, “On the Toda lattice. II”, Progr. Theoret. Phys., 51:3 (1974), 703–716 | DOI | MR | Zbl

[24] N. V. Zhernakov, “Pryamaya i obratnaya zadachi dlya periodicheskoi yakobievoi matritsy”, Ukr. matem. zh., 38:6 (1986), 785–788 | MR | Zbl

[25] N. V. Zhernakov, “Integrirovanie tsepochek Tody v klasse operatorov Gilberta–Shmidta”, Ukr. matem. zh., 39:5 (1987), 645–648 | MR | Zbl

[26] N. V. Zhernakov, Spektralnaya teoriya nekotorykh klassov yakobievykh matrits i ee primeneniya k integrirovaniyu tsepochki Tody, Diss. k.f.-m.n., Institut matematiki AN USSR, Kiev, 1987

[27] M. Bruschi, S. V. Manakov, O. Ragnisco, D. Levi, “The nonabelian Toda lattice — discrete analogue of the matrix Schrödinger spectral problem”, J. Math. Phys., 21 (1980), 2749–2753 | DOI | MR | Zbl

[28] M. Bruschi, O. Ragnisco, D. Levi, “Evolution equations associated with the discrete analog of the matrix Schrödinger spectral problem solvable by the inverse spectral transform”, J. Math. Phys., 22 (1981), 2463–2471 | DOI | MR | Zbl

[29] A. Yu. Daletskii, G. B. Podkolzin, “Gruppovoi podkhod k integrirovaniyu beskonechnoi tsepochki Tody”, Ukr. matem. zh., 40:4 (1988), 518–521 | MR

[30] Yu. M. Berezansky, “Integration of nonlinear nonisospectral difference-differential equations by means of the inverse spectral problem”, Nonlinear Physics, Theory and Experiment, Proc. of the First Workshop (Gallipoli (Lecce), Italy, June 29–July 7, 1995), World Sci. Publ., River Edge, NJ, 1996, 11–20 | MR | Zbl

[31] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Mathematical Surveys and Monographs, 72, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[32] Yu. M. Berezanskii, M. I. Gekhtman, M. E. Shmoish, “Integrirovanie metodom obratnoi spektralnoi zadachi nekotorykh tsepochek nelineinykh raznostnykh uravnenii”, Ukr. matem. zh., 38:1 (1986), 84–89 | MR | Zbl

[33] Yu. Berezansky, M. Shmoish, “Nonisospectral flows on semi-infinite Jacobi matrices”, Nonlinear Math. Phys., 1:2 (1994), 116–146 | DOI | MR | Zbl

[34] O. A. Mokhonko, “Deyaki rozv'yazni klasi neliniinikh neizospektralnikh riznitsevikh rivnyan”, Ukr. matem. zh., 57:3 (2005), 356–365 | MR

[35] M. Szczepanik, “Integration of semi-infinite Toda chain in some class of unbounded solutions”, Rep. Math. Phys., 39:2 (1997), 263–273 | DOI | MR | Zbl

[36] B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory, Part 2: Spectral Theory, Amer. Math. Soc. Colloquium Publications, Amer. Math. Soc., Providence, RI, 2005 | MR

[37] B. Simon, OPUC on one foot, Preprint, Mathematics 253–37, California Institute of Technology, Pasadena, CA 91125, 2005 | MR | Zbl

[38] M. J. Cantero, L. Moral, L. Velázquez, “Five-diagonal matrices and zeros of orthogonal polynomials on the unite circle”, Linear Algebra Appl., 362 (2003), 29–56 | DOI | MR | Zbl

[39] L. B. Golinskii, “Potoki Shura i ortogonalnye polinomy na edinichnoi okruzhnosti”, Matem. sb., 197:8 (2006), 41–62 | DOI | MR

[40] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.–L., 1950 | MR

[41] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987 | MR | Zbl

[42] Yu. M. Berezansky, M. E. Dudkin, “On the complex moment problem”, Math. Nachr., 280:1–2 (2007), 60–73 | DOI | MR | Zbl

[43] A. I. Markushevich, Teoriya analiticheskikh funktsii, Gostekhizdat, M.–L., 1950 | MR