Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 1-21

Voir la notice de l'article provenant de la source Math-Net.Ru

The following method for integrating the Cauchy problem for a Toda lattice on the half-line is well known: to a solution $u(t)$, $t\in[0,\infty)$, of the problem, one assigns a self-adjoint semi-infinite Jacobi matrix $J(t)$ whose spectral measure $d\rho(\lambda;t)$ undergoes simple evolution in time $t$. The solution of the Cauchy problem goes as follows. One writes out the spectral measure $d\rho(\lambda;0)$ for the initial value $u(0)$ of the solution and the corresponding Jacobi matrix $J(0)$ and then computes the time evolution $d\rho(\lambda;t)$ of this measure. Using the solution of the inverse spectral problem, one reconstructs the Jacobi matrix $J(t)$ from $d\rho(\lambda;t)$ and hence finds the desired solution $u(t)$. In the present paper, this approach is generalized to the case in which the role of $J(t)$ is played by a block Jacobi matrix generating a normal operator in the orthogonal sum of finite-dimensional spaces with spectral measure $d\rho(\zeta;t)$ defined on the complex plane. Some recent results on the spectral theory of these normal operators permit one to use the integration method described above for a rather wide class of differential-difference nonlinear equations replacing the Toda lattice.
Keywords: block Jacobi matrix, generalized eigenvector, spectral representation, Toda lattice.
@article{FAA_2008_42_1_a0,
     author = {Yu. M. Berezanskii and A. A. Mokhon'ko},
     title = {Integration of {Some} {Differential-Difference} {Nonlinear} {Equations} {Using} the {Spectral} {Theory} of {Normal} {Block} {Jacobi} {Matrices}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a0/}
}
TY  - JOUR
AU  - Yu. M. Berezanskii
AU  - A. A. Mokhon'ko
TI  - Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 1
EP  - 21
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a0/
LA  - ru
ID  - FAA_2008_42_1_a0
ER  - 
%0 Journal Article
%A Yu. M. Berezanskii
%A A. A. Mokhon'ko
%T Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 1-21
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a0/
%G ru
%F FAA_2008_42_1_a0
Yu. M. Berezanskii; A. A. Mokhon'ko. Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a0/