Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 1-21
Voir la notice de l'article provenant de la source Math-Net.Ru
The following method for integrating the Cauchy problem for a Toda lattice on the half-line is well known: to a solution $u(t)$, $t\in[0,\infty)$, of the problem, one assigns a self-adjoint
semi-infinite Jacobi matrix $J(t)$ whose spectral measure $d\rho(\lambda;t)$ undergoes simple evolution in time $t$. The solution of the Cauchy problem goes as follows. One writes out the spectral measure $d\rho(\lambda;0)$ for the initial value $u(0)$ of the solution and the corresponding Jacobi matrix $J(0)$ and then computes the time evolution $d\rho(\lambda;t)$ of this measure. Using the solution of the inverse spectral problem, one reconstructs the Jacobi
matrix $J(t)$ from $d\rho(\lambda;t)$ and hence finds the desired solution $u(t)$.
In the present paper, this approach is generalized to the case in which the role of $J(t)$ is played by a block Jacobi matrix generating a normal operator in the orthogonal sum of finite-dimensional spaces with spectral measure $d\rho(\zeta;t)$ defined on the complex
plane. Some recent results on the spectral theory of these normal operators permit one to use the integration method described above for a rather wide class of differential-difference nonlinear equations replacing the Toda lattice.
Keywords:
block Jacobi matrix, generalized eigenvector, spectral representation, Toda lattice.
@article{FAA_2008_42_1_a0,
author = {Yu. M. Berezanskii and A. A. Mokhon'ko},
title = {Integration of {Some} {Differential-Difference} {Nonlinear} {Equations} {Using} the {Spectral} {Theory} of {Normal} {Block} {Jacobi} {Matrices}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--21},
publisher = {mathdoc},
volume = {42},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a0/}
}
TY - JOUR AU - Yu. M. Berezanskii AU - A. A. Mokhon'ko TI - Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2008 SP - 1 EP - 21 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a0/ LA - ru ID - FAA_2008_42_1_a0 ER -
%0 Journal Article %A Yu. M. Berezanskii %A A. A. Mokhon'ko %T Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices %J Funkcionalʹnyj analiz i ego priloženiâ %D 2008 %P 1-21 %V 42 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a0/ %G ru %F FAA_2008_42_1_a0
Yu. M. Berezanskii; A. A. Mokhon'ko. Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a0/