$K$-Finite Matrix Elements of Irreducible Harish-Chandra Modules are Hypergeometric
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 60-69

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that each $K$-finite matrix element of an irreducible infinite-dimensional representation of a semisimple Lie group can be obtained from spherical functions by a finite collection of operations. In particular, each matrix element admits a finite expression in the terms of the Heckman–Opdam hypergeometric functions.
Keywords: semisimple Lie groups, Harish-Chandra modules, infinite-dimensional representations, spherical functions, special functions, Heckman–Opdam hypergeometric functions.
Mots-clés : matrix elements
@article{FAA_2007_41_4_a4,
     author = {Yu. A. Neretin},
     title = {$K${-Finite} {Matrix} {Elements} of {Irreducible} {Harish-Chandra} {Modules} are {Hypergeometric}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {60--69},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a4/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - $K$-Finite Matrix Elements of Irreducible Harish-Chandra Modules are Hypergeometric
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 60
EP  - 69
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a4/
LA  - ru
ID  - FAA_2007_41_4_a4
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T $K$-Finite Matrix Elements of Irreducible Harish-Chandra Modules are Hypergeometric
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 60-69
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a4/
%G ru
%F FAA_2007_41_4_a4
Yu. A. Neretin. $K$-Finite Matrix Elements of Irreducible Harish-Chandra Modules are Hypergeometric. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 60-69. http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a4/