$K$-Finite Matrix Elements of Irreducible Harish-Chandra Modules are Hypergeometric
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 60-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that each $K$-finite matrix element of an irreducible infinite-dimensional representation of a semisimple Lie group can be obtained from spherical functions by a finite collection of operations. In particular, each matrix element admits a finite expression in the terms of the Heckman–Opdam hypergeometric functions.
Keywords: semisimple Lie groups, Harish-Chandra modules, infinite-dimensional representations, spherical functions, special functions, Heckman–Opdam hypergeometric functions.
Mots-clés : matrix elements
@article{FAA_2007_41_4_a4,
     author = {Yu. A. Neretin},
     title = {$K${-Finite} {Matrix} {Elements} of {Irreducible} {Harish-Chandra} {Modules} are {Hypergeometric}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {60--69},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a4/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - $K$-Finite Matrix Elements of Irreducible Harish-Chandra Modules are Hypergeometric
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 60
EP  - 69
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a4/
LA  - ru
ID  - FAA_2007_41_4_a4
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T $K$-Finite Matrix Elements of Irreducible Harish-Chandra Modules are Hypergeometric
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 60-69
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a4/
%G ru
%F FAA_2007_41_4_a4
Yu. A. Neretin. $K$-Finite Matrix Elements of Irreducible Harish-Chandra Modules are Hypergeometric. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 60-69. http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a4/

[1] D. N. Akhiezer, S. G. Gindikin, “On Stein extensions of real symmetric spaces”, Math. Ann., 286:1–3 (1990), 1–12 | DOI | MR | Zbl

[2] F. A. Berezin, F. I. Karpelevich, “Zonalnye sfericheskie funktsii i operatory Laplasa na nekotorykh simmetricheskikh prostranstvakh”, Dokl. AN SSSR, 118 (1958), 9–12 | MR | Zbl

[3] W. Casselman, Dr. Miličić, “Asymptotic behavior of matrix coefficients of admissible representations”, Duke Math. J., 49:4 (1982), 869–930 | DOI | MR | Zbl

[4] I. M. Gelfand, M. I. Naimark, Unitarnye predstavleniya kompleksnykh klassicheskikh grupp, Trudy MIAN, 36, 1950 | MR | Zbl

[5] R. Goodman, “Holomorphic representations of nilpotent lie groups”, J. Funct. Anal., 31 (1979), 115–137 | DOI | MR | Zbl

[6] G. I. Heckman, E. M. Opdam, “Root systems and hypergeometric functions. I”, Compositio Math., 64 (1987), 329–352 | MR | Zbl

[7] G. Heckman, H. Schlichtkrull, Harmonic analysis and special functions on symmetric spaces, Academic Press, San Diego, 1994 | MR | Zbl

[8] S. Khelgason, Gruppy i geometricheskii analiz. Integralnaya geometriya, invariantnye differentsialnye operatory i sfericheskie funktsii, Mir, M., 1987 | MR

[9] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, M., 1972 | MR

[10] A. Knapp, Representation Theory of Real Semisimple Groups, Princeton Univ. Press, Princeton, N.J., 1986 | MR | Zbl

[11] B. Kostant, “On the tensor product of a finite and an infinite dimensional representation”, J. Funct. Anal., 20:4 (1975), 257–285 | DOI | MR | Zbl

[12] B. Krötz, R. J. Stanton, “Holomorphic extensions of representations. II. Geometry and harmonic analysis”, Geom. Funct. Anal., 15:1 (2005), 190–245 | DOI | MR | Zbl

[13] G. L. Litvinov, “O vpolne privodimykh predstavleniyakh kompleksnykh i veschestvennykh grupp Li”, Funkts. analiz i ego pril., 3:4 (1969), 87–88 | MR | Zbl

[14] E. Nelson, “Analytic vectors”, Ann. of Math., 70 (1959), 572–615 ; E. Nelson, “Analiticheskie vektory”, Sb. «Matematika», 6:3 (1962), 89–131 | DOI | MR | Zbl

[15] Yu. A. Neretin, “Golomorfnye prodolzheniya predstavlenii gruppy diffeomorfizmov okruzhnosti”, Matem. sb., 180:5 (1989), 635–657, 720 | MR

[16] Yu. A. Neretin, Kategorii simmetrii i beskonechnomernye gruppy, URSS, M., 1998

[17] Yu. A. Neretin, Branchning Integrals and Casselman Phenomenon, http://arxiv.org/abs/0710.2627 | MR

[18] G. I. Olshanskii, “Invariantnye konusy v algebrakh Li, polugruppy Li i golomorfnye diskretnye serii”, Funkts. analiz i ego pril., 15:4 (1981), 53–66 | MR

[19] R. O. Wells, Jr., J. A. Wolf, “Poincare series and automorphic cohomology on flag domains”, Ann. of Math. (2), 105:3 (1977), 397–448 | DOI | MR | Zbl