Stability of Existence of Nonhyperbolic Measures for $C^1$-Diffeomorphisms
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 30-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space of diffeomorphisms of an arbitrary closed manifold of dimension $\ge3$, we construct an open set such that each diffeomorphism in this set has an invariant ergodic measure with respect to which one of the Lyapunov exponents is zero. These diffeomorphisms are constructed to have a partially hyperbolic invariant set on which the dynamics is conjugate to a soft skew product with fiber the circle. It is the central Lyapunov exponent that proves to be zero in this case, and the construction is based on an analysis of properties of the corresponding skew products.
Keywords: Lyapunov exponent, partial hyperbolicity, dynamical system, skew product.
@article{FAA_2007_41_4_a2,
     author = {V. A. Kleptsyn and M. B. Nalsky},
     title = {Stability of {Existence} of {Nonhyperbolic} {Measures} for $C^1${-Diffeomorphisms}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {30--45},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a2/}
}
TY  - JOUR
AU  - V. A. Kleptsyn
AU  - M. B. Nalsky
TI  - Stability of Existence of Nonhyperbolic Measures for $C^1$-Diffeomorphisms
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 30
EP  - 45
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a2/
LA  - ru
ID  - FAA_2007_41_4_a2
ER  - 
%0 Journal Article
%A V. A. Kleptsyn
%A M. B. Nalsky
%T Stability of Existence of Nonhyperbolic Measures for $C^1$-Diffeomorphisms
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 30-45
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a2/
%G ru
%F FAA_2007_41_4_a2
V. A. Kleptsyn; M. B. Nalsky. Stability of Existence of Nonhyperbolic Measures for $C^1$-Diffeomorphisms. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 30-45. http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a2/

[1] R. Abraham, S. Smale, “Nongenericity of $\Omega$-stability”, Global Analysis (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., XIV, Amer. Math. Soc., Providence, R.I., 1970, 5–8 | DOI | MR

[2] Ya. B. Pesin, “Kharakteristicheskie pokazateli Lyapunova i gladkaya ergodicheskaya teoriya”, UMN, 32(196):4 (1977), 55–112 | MR | Zbl

[3] H. Furstenberg, H. Kesten, “Products of random matrices”, Ann. Math. Statist., 31 (1960), 457–469 | DOI | MR | Zbl

[4] C. Bonatti, X. Gomez-Mont, M. Viana, “Généricité d'exposants de Lyapunov non-nuls pour des produits déterministes de matrices”, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 20:4 (2003), 579–624 | DOI | MR | Zbl

[5] L. Arnold, N. D. Cong, V. I. Oseledets, “Jordan normal form for linear cocycles”, Random Oper. Stochastic Equations, 7:4 (1999), 303–358 | DOI | MR | Zbl

[6] L. Arnold, N. D. Cong, “Linear cocycles with simple Lyapunov spectrum are dense in $L^\infty$”, Ergodic Theory Dynam. Systems, 19:6 (1999), 1389–1404 | DOI | MR | Zbl

[7] J. Bochi, “Genericity of zero Lyapunov exponents”, Ergodic Theory Dynam. Systems, 22:6 (2002), 1667–1696 | DOI | MR | Zbl

[8] J. Bochi, M. Viana, “Uniform (projective) hyperbolicity or no hyperbolicity: a dichotomy for generic conservative maps”, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 19:1 (2002), 113–123 | DOI | MR | Zbl

[9] A. Baraviera, C. Bonatti, “Removing zero Lyapunov exponents”, Ergodic Theory Dynam. Systems, 23 (2003), 1655–1670 | DOI | MR | Zbl

[10] M. Shub, A. Wilkinson, “Pathological foliations and removable zero exponents”, Invent. Math., 139 (2000), 495–508 | DOI | MR | Zbl

[11] D. Ruele, A. Wilkinson, “Absolutely singular dynamical foliations”, Comm. Math. Phys., 219:3 (2001), 481–487 | DOI | MR

[12] D. Dolgopyat, Y. Pesin, “Every compact manifold carries a completely hyperbolic diffeomorphism”, Ergodic Theory Dynam. Systems, 22:2 (2002), 409–435 | DOI | MR | Zbl

[13] M. W. Hirsch, C. C. Pugh, M. Shub, Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977 | DOI | MR | Zbl

[14] A. S. Gorodetskii, Yu. S. Ilyashenko, “Nekotorye novye grubye svoistva invariantnykh mnozhestv i attraktorov dinamicheskikh sistem”, Funkts. analiz i ego pril., 33:2 (1999), 16–30 | DOI | MR

[15] A. S. Gorodetskii, Yu. S. Ilyashenko, “Nekotorye svoistva kosykh proizvedenii nad podkovoi i solenoidom”, Trudy MIRAN, 231 (2000), 96–118 | MR

[16] A. S. Gorodetskii, Minimalnye attraktory i chastichno giperbolicheskie invariantnye mnozhestva dinamicheskikh sistem, Diss. k.f.-m.n., MGU im. M. V. Lomonosova, mekh.-mat. f-t, 2001

[17] A. S. Gorodetskii, “Regulyarnost tsentralnykh sloev chastichno giperbolicheskikh mnozhestv i prilozheniya”, Izv. RAN, ser. matem., 70:6 (2006), 19–44 | DOI | MR

[18] A. Gorodetskii, Yu. Ilyashenko, V. Kleptsyn, M. Nalskii, “Neustranimost nulevykh pokazatelei Lyapunova”, Funkts. analiz i ego pril., 39:1 (2005), 27–38 | DOI | MR

[19] Yu. Ilyashenko, W. Li, Nonlocal bifurcations, Amer. Math. Soc., Providence, R.I., 1998 | MR | Zbl

[20] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[21] A. B. Katok, A. M. Stepin, “Ob approksimatsiyakh ergodicheskikh dinamicheskikh sistem periodicheskimi preobrazovaniyami”, DAN SSSR, 171 (1966), 1268–1271 | MR | Zbl

[22] A. B. Katok, A. M. Stepin, “Approksimatsii v ergodicheskoi teorii”, UMN, 22(137):5 (1967), 81–106 | MR | Zbl