To the Theory of the Dirichlet and Neumann Problems for Strongly Elliptic Systems in Lipschitz Domains
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 1-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

For strongly elliptic systems with Douglis–Nirenberg structure, we investigate the regularity of variational solutions to the Dirichlet and Neumann problems in a bounded Lipschitz domain. The solutions of the problems with homogeneous boundary conditions are originally defined in the simplest $L_2$-Sobolev spaces $H^\sigma$. The regularity results are obtained in the potential spaces $H^\sigma_p$ and Besov spaces $B^\sigma_p$. In the case of second-order systems, the author's results obtained a year ago are strengthened. The Dirichlet problem with nonhomogeneous boundary conditions is considered using Whitney arrays.
Keywords: strong ellipticity, Lipschitz domain, Dirichlet problem, Neumann problem, potential space, Whitney array.
Mots-clés : variational solution, Besov space
@article{FAA_2007_41_4_a0,
     author = {M. S. Agranovich},
     title = {To the {Theory} of the {Dirichlet} and {Neumann} {Problems} for {Strongly} {Elliptic} {Systems} in {Lipschitz} {Domains}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a0/}
}
TY  - JOUR
AU  - M. S. Agranovich
TI  - To the Theory of the Dirichlet and Neumann Problems for Strongly Elliptic Systems in Lipschitz Domains
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 1
EP  - 21
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a0/
LA  - ru
ID  - FAA_2007_41_4_a0
ER  - 
%0 Journal Article
%A M. S. Agranovich
%T To the Theory of the Dirichlet and Neumann Problems for Strongly Elliptic Systems in Lipschitz Domains
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 1-21
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a0/
%G ru
%F FAA_2007_41_4_a0
M. S. Agranovich. To the Theory of the Dirichlet and Neumann Problems for Strongly Elliptic Systems in Lipschitz Domains. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 1-21. http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a0/

[1] V. Adolfsson, J. Pipher, “The inhomogeneous Dirichlet problem for $\Delta^2$ in Lipschitz domains”, J. Funct. Anal., 159 (1998), 137–190 | DOI | MR | Zbl

[2] M. C. Agranovich, “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, UMN, 57:5 (2002), 3–79 | DOI | MR | Zbl

[3] M. S. Agranovich, “Regulyarnost variatsionnykh reshenii lineinykh granichnykh zadach v lipshitsevykh oblastyakh”, Funkts. analiz i ego pril., 40:4 (2006), 83–103 | DOI | MR | Zbl

[4] M. S. Agranovich, “Remarks on spaces of potentials and Besov spaces in a Lipschitz domain and of Whitney arrays on its boundary”, Russian J. Math. Phys., 16:2 (2008) (to appear) | DOI | MR

[5] I. Berg, I. Lëfstrëm, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[6] M. Costabel, “Boundary integral operators on Lipschitz domains: elementary results”, SIAM J. Math. Anal., 19:3 (1988), 613–626 | DOI | MR | Zbl

[7] B. E. J. Dahlberg, C. E. Kenig, J. Pipher, G. C. Verchota, “Area integral estimates for higher order elliptic equations and systems”, Ann. Inst. Fourier (Grenoble), 47 (1997), 1425–1461 | DOI | MR | Zbl

[8] B. E. J. Dahlberg, C. E. Kenig, G. C. Verchota, “The Dirichlet problem for the biharmonic equation in a Lipschitz domain”, Ann. Inst. Fourier (Grenoble), 36:3 (1986), 109–135 | DOI | MR | Zbl

[9] A. L. Goldenveizer, V. B. Lidskii, P. E. Tovstik, Svobodnye kolebaniya tonkikh uprugikh obolochek, Nauka, 1979 | MR

[10] E. Fabes, O. Mendes, M. Mitrea, “Boundary layers on Sobolev–Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains”, J. Funct. Anal., 159 (1998), 323–368 | DOI | MR | Zbl

[11] D. Jerison, C. E. Kenig, “The inhomogeneous Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 130 (1995), 164–219 | DOI | MR

[12] A. Jonsson, H. Wallin, Function Spaces on Subsets of $\mathbb{R}^n$, Math. Rep., 2, Harwood Academic Publ., 1984 | MR

[13] P. D. Lax, N. Milgram, “Parabolic equations”, Contributions to the Theory of Partial Differential Equations, Ann. Math. Stud., 33, 1954, 167–190 | MR | Zbl

[14] V. Maz'ya, M. Mitrea, T. Shaposhnikova, The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, , Jan. 2007 http://arxiv.org/abs/math/0701898

[15] M. Mitrea, M. Taylor, “Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev–Besov space results and the Poisson problem”, J. Funct. Anal., 176 (2000), 1–79 | DOI | MR | Zbl

[16] C. A. Nazarov, “Polinomialnoe svoistvo ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5 (1999), 77–142 | DOI | MR | Zbl

[17] J. Nec̆as, Les métodes directes en théorie des équations elliptiques, Masson, Academia, Paris–Prague, 1967 | MR | Zbl

[18] L. Nirenberg, “Remarks on strongly elliptic partial differential equations”, Comm. Pure Appl. Math., 8 (1955), 649–675 | DOI | MR | Zbl

[19] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Series, 1, Durham, N.C., 1976 | MR

[20] J. Pipher, G. Verchota, “Dilation invariant estimates and the boundary Gårding inequality for higher order elliptic operators”, Ann. of Math., 142 (1995), 1–38 | DOI | MR | Zbl

[21] R. Rokafellar, Vypuklyi analiz, Mir, M., 1973

[22] V. S. Rychkov, “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc. (2), 60 (1999), 237–257 | DOI | MR | Zbl

[23] J. Savaré, “Regularity results for elliptic equations in Lipschitz domains”, J. Funct. Anal., 152 (1998), 176–201 | DOI | MR | Zbl

[24] Z. Shen, “Necessary and sufficient conditions for the solvability of the $L_p$ Dirichlet problem on Lipschitz domains”, Math. Ann., 336 (2006), 697–795 | DOI | MR

[25] I. Ya. Shneiberg, “Spektralnye svoistva lineinykh operatorov v interpolyatsionnykh semeistvakh banakhovykh prostranstv”, Matem. issled., 9:2 (1974), 214–227 | MR

[26] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[27] H. Triebel, “Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers”, Rev. Mat. Comput., 15 (2002), 475–524 | MR | Zbl

[28] G. Verchota, “The Dirichlet problem for polyharmonic equation in Lipschitz domains”, Indiana Univ. Math. J., 39 (1990), 671–702 | DOI | MR | Zbl

[29] G. Verchota, “Potentials for the Dirichlet problem in Lipschitz domains.”, Potential Theory–ICPT 94, Valter de Gruyter, Berlin, 1996, 168–187 | MR

[30] G. Verchota, “The biharmonic Neumann problem in Lipschitz domains”, Acta Math., 194 (2005), 217–279 | DOI | MR | Zbl

[31] M. I. Vishik, “O silno ellipticheskikh sistemakh differentsialnykh uravnenii”, Matem. sb., 29 (71) (1951), 615–676 | Zbl

[32] H. Whitney, “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–69 | DOI | MR

[33] D. Zanger, “The inhomogeneous Neumann problem in Lipschitz domains”, Comm. Partial Differential Equations, 25:9–10 (2000), 1171–1808 | MR