Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2007_41_2_a5, author = {B. Simon}, title = {Meromorphic {Jost} {Functions} and {Asymptotic} {Expansions} for {Jacobi} {Parameters}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {78--92}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a5/} }
B. Simon. Meromorphic Jost Functions and Asymptotic Expansions for Jacobi Parameters. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 2, pp. 78-92. http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a5/
[1] E. Berriochoa, A. Cachafeiro, J. García-Amor, Generalizations of the Szegő transformation interval-unit circle, preprint
[2] D. Damanik, B. Simon, “Jost functions and Jost solutions for Jacobi matrices, I. A necessary and sufficient condition for Szegő asymptotics”, Invent. Math., 165 (2006), 1–50 | DOI | MR | Zbl
[3] D. Damanik, B. Simon, “Jost functions and Jost solutions for Jacobi matrices, II. Decay and analyticity”, Internat. Math. Res. Notices, 2006, Art. ID 19396. | MR
[4] P. Deift, J. Östensson, “A Riemann-Hilbert approach to some theorems on Toeplitz operators and orthogonal polynomials”, J. Approx. Theory, 139 (2006), 144–171 | DOI | MR | Zbl
[5] J. S. Geronimo, K. M. Case, “Scattering theory and polynomials orthogonal on the unit circle”, J. Math. Phys., 20 (1979), 299–310 | DOI | MR | Zbl
[6] Ya. L. Geronimus, “On the trigonometric moment problem”, Ann. of Math. (2), 47 (1946), 742–761 | DOI | MR | Zbl
[7] Ya. L. Geronimus, “Polinomy, ortogonalnye na kruge, i ikh prilozheniya”, Zap. nauchno-issled. inst. mat. mekh. Kharkov. matem. obsch. (4), 19 (1948), 35–120 | MR | Zbl
[8] R. Killip, I. Nenciu, “Matrix models for circular ensembles”, Internat. Math. Res. Notices, 50 (2004), 2665–2701 | DOI | MR | Zbl
[9] R. Killip, B. Simon, “Sum rules for Jacobi matrices and their applications to spectral theory”, Ann. of Math. (2), 158 (2003), 253–321 | DOI | MR | Zbl
[10] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, part 1, Amer. Math. Soc. Colloq. Publ., 54, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[11] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, part 2, Amer. Math. Soc. Colloq. Publ., 54, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[12] B. Simon, “Meromorphic Szegő functions and asymptotic series for Verblunsky coefficients”, Acta Math., 195 (2005), 267–285 | DOI | MR | Zbl
[13] G. Szegő, “Über den asymptotischen Ausdruck von Polynomen, die durch eine Orthogonalitätseigenschaft definiert sind”, Math. Ann., 86 (1922), 114–139 | DOI | MR | Zbl
[14] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1939 ; 3rd edition, 1967 | Zbl