Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2007_41_2_a4, author = {Yu. I. Lyubarskii and V. A. Marchenko}, title = {Direct and {Inverse} {Multichannel} {Scattering} {Problems}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {58--77}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a4/} }
Yu. I. Lyubarskii; V. A. Marchenko. Direct and Inverse Multichannel Scattering Problems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 2, pp. 58-77. http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a4/
[1] Z. S. Agranovich. V. A. Marchenko, Obratnaya zadacha teorii rasseyaniya, Izd-vo Kharkovskogo gosuniversiteta, 1960
[2] R. Carlson, “Inverse eigenvalue problems on directed graphs”, Trans. Amer. Math. Soc., 351:10 (1999), 4069–4088 | DOI | MR | Zbl
[3] I. M. Glazman, Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, 1963 | MR
[4] N. I. Gerasimenko, B. S. Pavlov, “Zadacha rasseyaniya na nekompaktnykh grafakh”, Teor. matem. fizika, 74:3 (1988), 345–359 | MR | Zbl
[5] B. Gutkin, U. Smilansky, Can one hear the shape of a graph?, J. Phys. A, 34:31 (2001), 6061–6068 | DOI | MR | Zbl
[6] V. Kostrykin, R. Schrader, The inverse scattering problem for metric graphs and the travelling salesman problem, http://arxiv.org/abs/math-ph/0603010
[7] P. Kuchment, “Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs”, J. Phys. A, 38:22 (2005), 4887–4900 | DOI | MR | Zbl
[8] P. Kurasov, M. Nowaczyk, “Inverse spectral problem for quantum graphs”, J. Phys. A, 38:22 (2005), 4901–4915 | DOI | MR | Zbl
[9] V. A. Marchenko, Vvedenie v teoriyu obratnykh zadach spektralnogo analiza, Akta, Kharkov, 2005