Direct and Inverse Multichannel Scattering Problems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 2, pp. 58-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider small oscillations of a system of pairwise interacting particles in an external field near a stable equilibrium. The system is assumed to consist of finitely many channels, i.e., semi-infinite linear chains of particles, attached to a scatterer, which is a finite system of interacting particles. Direct and inverse scattering problems are considered. In particular, an algorithm finding characteristics of the channels on the basis of scattering data is given.
Keywords: inverse scattering problem, Sturm–Liouville operator, differential-difference operator
Mots-clés : Jacobi matrix.
@article{FAA_2007_41_2_a4,
     author = {Yu. I. Lyubarskii and V. A. Marchenko},
     title = {Direct and {Inverse} {Multichannel} {Scattering} {Problems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {58--77},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a4/}
}
TY  - JOUR
AU  - Yu. I. Lyubarskii
AU  - V. A. Marchenko
TI  - Direct and Inverse Multichannel Scattering Problems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 58
EP  - 77
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a4/
LA  - ru
ID  - FAA_2007_41_2_a4
ER  - 
%0 Journal Article
%A Yu. I. Lyubarskii
%A V. A. Marchenko
%T Direct and Inverse Multichannel Scattering Problems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 58-77
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a4/
%G ru
%F FAA_2007_41_2_a4
Yu. I. Lyubarskii; V. A. Marchenko. Direct and Inverse Multichannel Scattering Problems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 2, pp. 58-77. http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a4/

[1] Z. S. Agranovich. V. A. Marchenko, Obratnaya zadacha teorii rasseyaniya, Izd-vo Kharkovskogo gosuniversiteta, 1960

[2] R. Carlson, “Inverse eigenvalue problems on directed graphs”, Trans. Amer. Math. Soc., 351:10 (1999), 4069–4088 | DOI | MR | Zbl

[3] I. M. Glazman, Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, 1963 | MR

[4] N. I. Gerasimenko, B. S. Pavlov, “Zadacha rasseyaniya na nekompaktnykh grafakh”, Teor. matem. fizika, 74:3 (1988), 345–359 | MR | Zbl

[5] B. Gutkin, U. Smilansky, Can one hear the shape of a graph?, J. Phys. A, 34:31 (2001), 6061–6068 | DOI | MR | Zbl

[6] V. Kostrykin, R. Schrader, The inverse scattering problem for metric graphs and the travelling salesman problem, http://arxiv.org/abs/math-ph/0603010

[7] P. Kuchment, “Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs”, J. Phys. A, 38:22 (2005), 4887–4900 | DOI | MR | Zbl

[8] P. Kurasov, M. Nowaczyk, “Inverse spectral problem for quantum graphs”, J. Phys. A, 38:22 (2005), 4901–4915 | DOI | MR | Zbl

[9] V. A. Marchenko, Vvedenie v teoriyu obratnykh zadach spektralnogo analiza, Akta, Kharkov, 2005