Krein Duality, Positive 2-Algebras, and Dilation of Comultiplications
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 2, pp. 24-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Krein–Tannaka duality for compact groups was a generalization of the Pontryagin–van Kampen duality for locally compact Abelian groups and a remote predecessor of the theory of tensor categories. It is less known that it found applications in algebraic combinatorics (“Krein algebras”). Later, this duality was substantially extended: in [A. M. Vershik, Zap. Nauchn. Semin. LOMI, 29, 1972, 147–154], the notion of involutive algebras in positive vector duality was introduced. In this paper, we reformulate the notions of this theory using the language of bialgebras (and Hopf algebras) and introduce the class of involutive bialgebras and positive $2$-algebras. The main goal of the paper is to give a precise statement of a new problem, which we consider as one of the main problems in this field, concerning the existence of dilations (embeddings) of positive $2$-algebras in involutive bialgebras, or, in other words, the problem of describing subobjects of involutive bialgebras; we define two types of subobjects of bialgebras, strict and nonstrict ones. The dilation problem is illustrated by the example of the Hecke algebra, which is viewed as a positive involutive $2$-algebra. We consider in detail only the simplest situation and classify two-dimensional Hecke algebras for various values of the parameter $q$, demonstrating the difference between the two types of dilations. We also prove that the class of finite-dimensional involutive semisimple bialgebras coincides with the class of semigroup algebras of finite inverse semigroups.
Keywords: algebras in positive duality, positive 2-algebra, subobjects.
Mots-clés : comultiplication
@article{FAA_2007_41_2_a2,
     author = {A. M. Vershik},
     title = {Krein {Duality,} {Positive} {2-Algebras,} and {Dilation} of {Comultiplications}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {24--43},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a2/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - Krein Duality, Positive 2-Algebras, and Dilation of Comultiplications
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 24
EP  - 43
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a2/
LA  - ru
ID  - FAA_2007_41_2_a2
ER  - 
%0 Journal Article
%A A. M. Vershik
%T Krein Duality, Positive 2-Algebras, and Dilation of Comultiplications
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 24-43
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a2/
%G ru
%F FAA_2007_41_2_a2
A. M. Vershik. Krein Duality, Positive 2-Algebras, and Dilation of Comultiplications. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 2, pp. 24-43. http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a2/

[1] N. Burbaki, Topologicheskie vektornye prostranstva, IL, M., 1959

[2] E. Bannai, E. Ito, Algebraicheskaya kombinatorika. Skhemy otnoshenii, Mir, M., 1987 | MR

[3] V. M. Bukhshtaber, A. M. Vershik, S. A. Evdokimov, I. N. Ponomarenko, “Kombinatornye algebry i mnogoznachnye involyutivnye gruppy”, Funkts. analiz i ego pril., 30:3 (1996), 12–18 | DOI | MR

[4] L. Vainerman, “O rabotakh M. G. Kreina po teorii predstavlenii i garmonicheskomu analizu na topologicheskikh gruppakh”, Ukr. matem. zh., 46:3 (1994), 198–211 | MR | Zbl

[5] A. M. Vershik, “Geometricheskaya teoriya sostoyanii, granitsa fon Neimana, dvoistvennost $C^*$-algebr”, Zap. nauchn. semin. LOMI, 29 (1972), 147–154 | Zbl

[6] A. M. Vershik, S. A. Evdokimov, I. N. Ponomarenko, “Algebry v plansherelevoi dvoistvennosti i algebraicheskaya kombinatorika”, Funkts. analiz i ego pril., 31:4 (1997), 34–46 | DOI | MR | Zbl

[7] S. A. Evdokimov, Shurovost i otdelimost assotsiativnykh skhem, Diss. d.f.-m.n., SPbGU, 2005

[8] K. Kassel, Kvantovye gruppy, Fazis, M., 1999

[9] S. V. Kerov, “Dvoistvennost konechnomernykh algebr”, Vestnik LGU, ser matem., 1974, no. 7, 23–29 | MR | Zbl

[10] S. V. Kerov, Dvoistvennost $C^*$-algebr i ee primery v teorii predstavlenii grupp, Diss. k.f.-m.n., LGU, 1974

[11] A. Klifford, D. Preston, Algebraicheskaya teoriya polugrupp, 1, Mir, M., 1972 | Zbl

[12] A. N. Kolmogorov, Sobranie sochinenii, 3, 2003 | MR

[13] M. G. Krein, “O polozhitelnykh funktsionalakh na pochti periodicheskikh funktsiyakh”, Dokl. AN SSSR, 30:1 (1941), 9–12 | MR | Zbl

[14] M. G. Krein, “Printsip dvoistvennosti dlya bikompaktnoi gruppy i kvadratnoi blok-algebry”, Dokl. AN SSSR, 69:6 (1949), 725–728 | MR | Zbl

[15] M. G. Krein, “Ermitovo-polozhitelnye yadra na odnorodnykh prostranstvakh, chast 1”, Ukr. matem. zh., 1:4 (1949), 64–98 | MR | Zbl

[16] M. G. Krein, “Ermitovo-polozhitelnye yadra na odnorodnykh prostranstvakh, chast 2”, Ukr. matem. zh., 2:1 (1950), 10–59 | MR | Zbl

[17] V. A. Oganesyan, “O poluprostote sistemnoi algebry”, Dokl. AN Arm. SSR, 21 (1955), 145–147 | MR | Zbl

[18] B. Sekefalvi-Nad, Ch. Foyash, Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[19] S. Bochner, “On a theorem of Tannaka and Krein”, Ann. of Math., 43 (1942), 56–58 | DOI | MR | Zbl

[20] G. I. Olshansky, “Unitary representations of the infinite symmetric group: a semigroup approach”, Representation of Lie groups and Lie algebras, Akad. Kiado, Budapest, 1985, 181–197. | MR

[21] V. M. Buchstaber, “$n$-valued groups: theory and applications”, Moscow Math. J., 6:1 (2006), 57–84 | DOI | MR | Zbl

[22] P. Deligne, “Catégories tannakiennes”, Progr. Math., 87, Birkhäuser, Boston, MA, 1990, 111–195 | MR | Zbl

[23] A. Joyal, R. Street, “An introduction to Tannaka duality and quantum groups”, Lecture Notes in Math., 1448, Springer-Verlag, Berlin, 1991, 413–492 | DOI | MR

[24] D. G. Higman, “Invariant relations, coherent configurations, generalized polygons”, Combinatorics (Proc. Advanced Study Inst., Breukelen, 1974), Part 3: Combinatorial Group Theory, Math. Centre Tracts, No. 57, Math. Centrum, Amsterdam, 1974, 27–43 | MR | Zbl

[25] A. Massoud, Tannaka–Krein duality for compact groups, http://arxiv.org/abs/math/0308259

[26] N. Saavedra Rivano, Catégories tannakienns, Lecture Notes in Math., 265, Springer-Verlag, Berlin–New York, 1972 | MR | Zbl

[27] L. Scott, “A condition on Higman parameters”, Notices Amer. Math. Soc., 701 (1972), 20–45

[28] L. Scott, “Modular permutation representations”, Trans. Amer. Math. Soc., 175 (1973), 101–121 | DOI | MR | Zbl

[29] T. Tannaka, “Über den Dualitätssatz der nichtkommutativen topologishen Gruppen”, Tohoku Math. J., 45 (1938), 1–12 | Zbl

[30] A. Van Daele, “Quantum groups with invariant integrals”, Proc. Nat. Acad. Sci. USA, 97:2 (2000), 541–546 | DOI | MR | Zbl

[31] A. Vershik, “Polymorphisms, Markov processes, and quasi-similarity”, Discrete Contin. Dyn. Syst., 13:5 (2005), 1305–1324 | DOI | MR | Zbl

[32] A. Vershik, Dvoistvennost Kreina, pozitivnye 2-algebry i dilatatsiya koumnozhenii, Preprint POMI No1, 2007