Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2007_41_2_a2, author = {A. M. Vershik}, title = {Krein {Duality,} {Positive} {2-Algebras,} and {Dilation} of {Comultiplications}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {24--43}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a2/} }
A. M. Vershik. Krein Duality, Positive 2-Algebras, and Dilation of Comultiplications. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 2, pp. 24-43. http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a2/
[1] N. Burbaki, Topologicheskie vektornye prostranstva, IL, M., 1959
[2] E. Bannai, E. Ito, Algebraicheskaya kombinatorika. Skhemy otnoshenii, Mir, M., 1987 | MR
[3] V. M. Bukhshtaber, A. M. Vershik, S. A. Evdokimov, I. N. Ponomarenko, “Kombinatornye algebry i mnogoznachnye involyutivnye gruppy”, Funkts. analiz i ego pril., 30:3 (1996), 12–18 | DOI | MR
[4] L. Vainerman, “O rabotakh M. G. Kreina po teorii predstavlenii i garmonicheskomu analizu na topologicheskikh gruppakh”, Ukr. matem. zh., 46:3 (1994), 198–211 | MR | Zbl
[5] A. M. Vershik, “Geometricheskaya teoriya sostoyanii, granitsa fon Neimana, dvoistvennost $C^*$-algebr”, Zap. nauchn. semin. LOMI, 29 (1972), 147–154 | Zbl
[6] A. M. Vershik, S. A. Evdokimov, I. N. Ponomarenko, “Algebry v plansherelevoi dvoistvennosti i algebraicheskaya kombinatorika”, Funkts. analiz i ego pril., 31:4 (1997), 34–46 | DOI | MR | Zbl
[7] S. A. Evdokimov, Shurovost i otdelimost assotsiativnykh skhem, Diss. d.f.-m.n., SPbGU, 2005
[8] K. Kassel, Kvantovye gruppy, Fazis, M., 1999
[9] S. V. Kerov, “Dvoistvennost konechnomernykh algebr”, Vestnik LGU, ser matem., 1974, no. 7, 23–29 | MR | Zbl
[10] S. V. Kerov, Dvoistvennost $C^*$-algebr i ee primery v teorii predstavlenii grupp, Diss. k.f.-m.n., LGU, 1974
[11] A. Klifford, D. Preston, Algebraicheskaya teoriya polugrupp, 1, Mir, M., 1972 | Zbl
[12] A. N. Kolmogorov, Sobranie sochinenii, 3, 2003 | MR
[13] M. G. Krein, “O polozhitelnykh funktsionalakh na pochti periodicheskikh funktsiyakh”, Dokl. AN SSSR, 30:1 (1941), 9–12 | MR | Zbl
[14] M. G. Krein, “Printsip dvoistvennosti dlya bikompaktnoi gruppy i kvadratnoi blok-algebry”, Dokl. AN SSSR, 69:6 (1949), 725–728 | MR | Zbl
[15] M. G. Krein, “Ermitovo-polozhitelnye yadra na odnorodnykh prostranstvakh, chast 1”, Ukr. matem. zh., 1:4 (1949), 64–98 | MR | Zbl
[16] M. G. Krein, “Ermitovo-polozhitelnye yadra na odnorodnykh prostranstvakh, chast 2”, Ukr. matem. zh., 2:1 (1950), 10–59 | MR | Zbl
[17] V. A. Oganesyan, “O poluprostote sistemnoi algebry”, Dokl. AN Arm. SSR, 21 (1955), 145–147 | MR | Zbl
[18] B. Sekefalvi-Nad, Ch. Foyash, Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR
[19] S. Bochner, “On a theorem of Tannaka and Krein”, Ann. of Math., 43 (1942), 56–58 | DOI | MR | Zbl
[20] G. I. Olshansky, “Unitary representations of the infinite symmetric group: a semigroup approach”, Representation of Lie groups and Lie algebras, Akad. Kiado, Budapest, 1985, 181–197. | MR
[21] V. M. Buchstaber, “$n$-valued groups: theory and applications”, Moscow Math. J., 6:1 (2006), 57–84 | DOI | MR | Zbl
[22] P. Deligne, “Catégories tannakiennes”, Progr. Math., 87, Birkhäuser, Boston, MA, 1990, 111–195 | MR | Zbl
[23] A. Joyal, R. Street, “An introduction to Tannaka duality and quantum groups”, Lecture Notes in Math., 1448, Springer-Verlag, Berlin, 1991, 413–492 | DOI | MR
[24] D. G. Higman, “Invariant relations, coherent configurations, generalized polygons”, Combinatorics (Proc. Advanced Study Inst., Breukelen, 1974), Part 3: Combinatorial Group Theory, Math. Centre Tracts, No. 57, Math. Centrum, Amsterdam, 1974, 27–43 | MR | Zbl
[25] A. Massoud, Tannaka–Krein duality for compact groups, http://arxiv.org/abs/math/0308259
[26] N. Saavedra Rivano, Catégories tannakienns, Lecture Notes in Math., 265, Springer-Verlag, Berlin–New York, 1972 | MR | Zbl
[27] L. Scott, “A condition on Higman parameters”, Notices Amer. Math. Soc., 701 (1972), 20–45
[28] L. Scott, “Modular permutation representations”, Trans. Amer. Math. Soc., 175 (1973), 101–121 | DOI | MR | Zbl
[29] T. Tannaka, “Über den Dualitätssatz der nichtkommutativen topologishen Gruppen”, Tohoku Math. J., 45 (1938), 1–12 | Zbl
[30] A. Van Daele, “Quantum groups with invariant integrals”, Proc. Nat. Acad. Sci. USA, 97:2 (2000), 541–546 | DOI | MR | Zbl
[31] A. Vershik, “Polymorphisms, Markov processes, and quasi-similarity”, Discrete Contin. Dyn. Syst., 13:5 (2005), 1305–1324 | DOI | MR | Zbl
[32] A. Vershik, Dvoistvennost Kreina, pozitivnye 2-algebry i dilatatsiya koumnozhenii, Preprint POMI No1, 2007