Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 83-103
Voir la notice de l'article provenant de la source Math-Net.Ru
In a bounded Lipschitz domain in $\mathbb{R}^n$, we consider a second-order
strongly elliptic system with symmetric principal part written in divergent form. We study the Neumann boundary value problem in a generalized variational (or weak) setting using the Lebesgue spaces $H^\sigma_p(\Omega)$ for solutions, where $p$ can differ from $2$ and $\sigma$ can differ from $1$. Using the tools of interpolation theory, we generalize the known theorem on the regularity of solutions, in which $p=2$ and $|\sigma-1|1/2$, and the corresponding theorem on the unique solvability of the problem (Savaré, 1998) to $p$ close to $2$. We compare this approach with the nonvariational approach accepted in numerous papers of the modern theory of boundary value problems in Lipschitz domains. We discuss the regularity of eigenfunctions of the Dirichlet, Neumann, and
Poincaré–Steklov spectral problems.
Keywords:
second-order strongly elliptic system, Dirichlet, Neumann, and Poincaré–Steklov boundary value problems, regularity of solutions, regularity of eigenfunctions.
Mots-clés : variational solution, interpolation, Lebesgue and Besov spaces
Mots-clés : variational solution, interpolation, Lebesgue and Besov spaces
@article{FAA_2006_40_4_a7,
author = {M. S. Agranovich},
title = {Regularity of {Variational} {Solutions} to {Linear} {Boundary} {Value} {Problems} in {Lipschitz} {Domains}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {83--103},
publisher = {mathdoc},
volume = {40},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a7/}
}
TY - JOUR AU - M. S. Agranovich TI - Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2006 SP - 83 EP - 103 VL - 40 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a7/ LA - ru ID - FAA_2006_40_4_a7 ER -
M. S. Agranovich. Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 83-103. http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a7/