Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 83-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a bounded Lipschitz domain in $\mathbb{R}^n$, we consider a second-order strongly elliptic system with symmetric principal part written in divergent form. We study the Neumann boundary value problem in a generalized variational (or weak) setting using the Lebesgue spaces $H^\sigma_p(\Omega)$ for solutions, where $p$ can differ from $2$ and $\sigma$ can differ from $1$. Using the tools of interpolation theory, we generalize the known theorem on the regularity of solutions, in which $p=2$ and $|\sigma-1|1/2$, and the corresponding theorem on the unique solvability of the problem (Savaré, 1998) to $p$ close to $2$. We compare this approach with the nonvariational approach accepted in numerous papers of the modern theory of boundary value problems in Lipschitz domains. We discuss the regularity of eigenfunctions of the Dirichlet, Neumann, and Poincaré–Steklov spectral problems.
Keywords: second-order strongly elliptic system, Dirichlet, Neumann, and Poincaré–Steklov boundary value problems, regularity of solutions, regularity of eigenfunctions.
Mots-clés : variational solution, interpolation, Lebesgue and Besov spaces
@article{FAA_2006_40_4_a7,
     author = {M. S. Agranovich},
     title = {Regularity of {Variational} {Solutions} to {Linear} {Boundary} {Value} {Problems} in {Lipschitz} {Domains}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {83--103},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a7/}
}
TY  - JOUR
AU  - M. S. Agranovich
TI  - Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 83
EP  - 103
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a7/
LA  - ru
ID  - FAA_2006_40_4_a7
ER  - 
%0 Journal Article
%A M. S. Agranovich
%T Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 83-103
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a7/
%G ru
%F FAA_2006_40_4_a7
M. S. Agranovich. Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 83-103. http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a7/

[1] M. S. Agranovich, “Elliptic boundary problems”, Partial Differential Equations, IX, Encyclopaedia Math. Sci., 79, Springer-Verlag, Berlin, 1997, 1–144 | DOI | MR | Zbl

[2] M. S. Agranovich, “Spektralnye svoistva operatorov tipa potentsiala dlya klassa silno ellipticheskikh sistem na gladkikh i negladkikh poverkhnostyakh”, Trudy MMO, 62, 2001, 3–53 | Zbl

[3] M. S. Agranovich, “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, UMN, 57:5 (2002), 3–79 | DOI | MR | Zbl

[4] M. S. Agranovich, “Strongly elliptic second order systems with spectral parameter in transmission conditions on a nonclosed surface”, Oper. Theory Adv. Appl., 164, Birkhäuser, Basel, 2006, 1–21 | MR | Zbl

[5] M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, N. N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley–VCH, Berlin, 1999 | MR | Zbl

[6] I. Berg, I. Lëfstrëm, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[7] R. Brown, “The mixed problem for Laplace's equation in a class of Lipschitz domains”, Comm. Partial Differential Equations, 19:7–8 (1994), 1217–1233 | DOI | MR | Zbl

[8] A. P. Calderón, “Intermediate spaces and interpolation, the complex method”, Studia Math., 24 (1964), 113–190 | DOI | MR | Zbl

[9] A. P. Calderón, “Boundary value problems for the Laplace equation in Lipschitzian domains”, Recent Progress in Fourier Analysis, Elsevier, 1985, 33–48 | MR

[10] Y.-Z. Chen, L.-Ch. Wu, Second Order Elliptic Equations and Elliptic Systems, Transl. of Math. Monographs, 174, Amer. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl

[11] R. R. Coifman, A. McIntosh, Y. Meyer, “L'intégrale de Cauchy définit un opérateur borné sur $L^2$ pour les courbes lipschitziennes”, Ann. of Math. (2), 116:2 (1982), 361–387 | DOI | MR | Zbl

[12] M. Costabel, “Boundary integral operators on Lipschitz domains: elementary results”, SIAM J. Math. Anal., 19:3 (1988), 613–626 | DOI | MR | Zbl

[13] B. E. J. Dahlberg, C. E. Kenig, “$L^p$ estimates for the three-dimensional systems of elastostatics in Lipschitz domains”, Lecture Notes in Pure Appl. Math., 122, M. Dekker, New York, 1990, 621–634 | MR

[14] B. E. J. Dahlberg, C. E. Kenig, G. C. Verchota, “Boundary value problems for the system of elastostatics on Lipschitz domains”, Duke Math. J., 57 (1988), 795–818 | DOI | MR | Zbl

[15] N. Danford, Dzh. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962

[16] R. Duduchava, F.-O. Speck, “Pseudodifferential operators on compact manifolds with Lipschitz boundary”, Math. Nachr., 160 (1993), 149–191 | DOI | MR | Zbl

[17] R. Duduchava, W. L. Wendland, “The Wiener–Hopf method for systems of pseudodifferential equations with an application to crack problems”, Integral Equations Operator Theory, 23:3 (1995), 294–335 | DOI | MR | Zbl

[18] J. Elschner, H.-K. Kaiser, J. Rehberg, G. Schmidt, $W^{1,q}$ regularity results for elliptic transmission problems on heterogeneous polyhedra, Preprint No. 1066, WIAS, Berlin, 2005 | MR

[19] J. Elschner, J. Rehrberg, G. Schmidt, Optimal regularity for elliptic transmission problems including $C^1$ interfaces, Preprint No. 1994, WIAS, Berlin, 2006 | MR

[20] G. I. Eskin, Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973 | MR | Zbl

[21] E. Fabes, O. Mendez, M. Mitrea, “Boundary layers on Sobolev–Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains”, J. Funct. Anal., 159:2 (1998), 323–368 | DOI | MR | Zbl

[22] W. Gao, “Layer potentials and boundary value problems for elliptic systems in Lipschitz domains”, J. Funct. Anal., 95:2 (1991), 377–399 | DOI | MR | Zbl

[23] D. Gilbarg, N. S. Trudinger, Ellipticheskie uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[24] D. Jerison, C. E. Kenig, “The inhomogeneous Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 130:1 (1995), 161–219 | DOI | MR | Zbl

[25] N. Kalton, M. Mitrea, “Stability results on interpolation scales of quasi-Banach spaces and applications”, Trans. Amer. Math. Soc., 350:10 (1998), 3903–3922 | DOI | MR | Zbl

[26] C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[27] V. A. Kondratev, “Granichnye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi tochkami”, Trudy MMO, 16, 1967, 209–292

[28] V. A. Kozlov, V. G. Mazżya, J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Math. Surveys Monographs, 52, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[29] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[30] D. Mitrea, M. Mitrea, “General second order strongly elliptic systems in low dimensional nonsmooth manifolds”, Harmonic Analysis and Boundary Value Problems (Fayetteville, AR, 2000), Contemp. Math., 227, 2001, 61–86 | DOI | MR

[31] D. Mitrea, M. Mitrea, M. Taylor, “Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds”, Mem. Amer. Math. Soc., 150, no. 713, Amer. Math. Soc., Providence, RI, 2001 | MR

[32] M. Mitrea, M. Taylor, “Boundary layer methods for Lipschitz domains in Riemannian manifolds”, J. Funct. Anal., 163:2 (1999), 181–251 | DOI | MR | Zbl

[33] M. Mitrea, M. Taylor, “Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev–Besov space results and the Poisson problem”, J. Funct. Anal., 176:1 (2000), 1–79 | DOI | MR | Zbl

[34] M. Mitrea, M. Taylor, “Sobolev and Besov space estimates for solutions to second order PDE on Lipschitz domains in manifolds with Dini or Hölder continuous metric tensors”, Comm. Partial Differential Equations, 30:1 (2005), 1–37 | DOI | MR | Zbl

[35] T. Muramatu, “On Besov spaces and Sobolev spaces of generalized functions defined on a general region”, Publ. Res. Inst. Math. Sci., 9 (1974), 325–396 | DOI | MR | Zbl

[36] S. A. Nazarov, B. A. Plamenevskii, Elliptic Problems in Domains with Piecewise–Smooth Boundaries, De Gruyter Expositions in Math., 13, Walter de Gruyter, Berlin, 1994 | MR

[37] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris; Academia, Prague, 1967 | MR | Zbl

[38] O. A. Oleinik, A. S. Shamaev, G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, Stud. Math. Appl., 26, North-Holland, Amsterdam, 1992 | MR

[39] B. V. Paltsev, “O smeshannoi zadache s neodnorodnymi granichnymi usloviyami dlya ellipticheskikh s parametrom uravnenii vtorogo poryadka v lipshitsevykh oblastyakh”, Matem. sb., 187:4 (1996), 59–116 | DOI | MR

[40] T. J. Ransford, “The spectrum of an interpolated operator and analytic multivalued functions”, Pacific J. Math., 121:2 (1986), 445–466 | DOI | MR | Zbl

[41] V. S. Rychkov, “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc. (2), 60:1 (1999), 237–257 | DOI | MR | Zbl

[42] G. Savaré, “Regularity and perturbation results for mixed second order elliptic problems”, Comm. Partial Differential Equations, 22:5–6 (1997), 869–899 | DOI | MR | Zbl

[43] G. Savaré, “Regularity results for elliptic equations in Lipschitz domains”, J. Funct. Anal., 152:1 (1998), 176–201 | DOI | MR | Zbl

[44] I. Ya. Shneiberg, “Spektralnye svoistva lineinykh operatorov v interpolyatsionnykh semeistvakh banakhovykh prostranstv”, Matem. issled., 9:2 (1974), 214–227 | MR

[45] B.-W. Schulze, The structure of operators on manifolds with polyhedral singularities, Preprint 2005/05, Univ. Potsdam, Inst. für Mathematik, Potsdam, 2005

[46] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[47] H. Triebel, “Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers”, Rev. Mat. Comput., 15:2 (2002), 475–524 | MR | Zbl

[48] G. Verchota, “Layer potentials and regularity for the Dirichlet problem for Laplace's equations in Lipschitz domains”, J. Funct. Anal., 59:2 (1984), 572–611 | DOI | MR | Zbl

[49] A. Tabacco Vignati, M. Vignati, “Spectral theory and complex interpolation”, J. Funct. Anal., 80:2 (1988), 383–397 | DOI | MR | Zbl

[50] M. I. Vishik, G. I. Eskin, “Uravneniya v svertkakh v ogranichennoi oblasti”, UMN, 20:3 (1965), 89–152 | MR | Zbl

[51] D. Z. Zanger, “The inhomogeneous Neumann problem in Lipschitz domains”, Comm. Partial Differential Equations, 25:9–10 (2000), 1771–1808 | DOI | MR | Zbl