Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2006_40_4_a7, author = {M. S. Agranovich}, title = {Regularity of {Variational} {Solutions} to {Linear} {Boundary} {Value} {Problems} in {Lipschitz} {Domains}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {83--103}, publisher = {mathdoc}, volume = {40}, number = {4}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a7/} }
TY - JOUR AU - M. S. Agranovich TI - Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2006 SP - 83 EP - 103 VL - 40 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a7/ LA - ru ID - FAA_2006_40_4_a7 ER -
M. S. Agranovich. Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 83-103. http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a7/
[1] M. S. Agranovich, “Elliptic boundary problems”, Partial Differential Equations, IX, Encyclopaedia Math. Sci., 79, Springer-Verlag, Berlin, 1997, 1–144 | DOI | MR | Zbl
[2] M. S. Agranovich, “Spektralnye svoistva operatorov tipa potentsiala dlya klassa silno ellipticheskikh sistem na gladkikh i negladkikh poverkhnostyakh”, Trudy MMO, 62, 2001, 3–53 | Zbl
[3] M. S. Agranovich, “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, UMN, 57:5 (2002), 3–79 | DOI | MR | Zbl
[4] M. S. Agranovich, “Strongly elliptic second order systems with spectral parameter in transmission conditions on a nonclosed surface”, Oper. Theory Adv. Appl., 164, Birkhäuser, Basel, 2006, 1–21 | MR | Zbl
[5] M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, N. N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley–VCH, Berlin, 1999 | MR | Zbl
[6] I. Berg, I. Lëfstrëm, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR
[7] R. Brown, “The mixed problem for Laplace's equation in a class of Lipschitz domains”, Comm. Partial Differential Equations, 19:7–8 (1994), 1217–1233 | DOI | MR | Zbl
[8] A. P. Calderón, “Intermediate spaces and interpolation, the complex method”, Studia Math., 24 (1964), 113–190 | DOI | MR | Zbl
[9] A. P. Calderón, “Boundary value problems for the Laplace equation in Lipschitzian domains”, Recent Progress in Fourier Analysis, Elsevier, 1985, 33–48 | MR
[10] Y.-Z. Chen, L.-Ch. Wu, Second Order Elliptic Equations and Elliptic Systems, Transl. of Math. Monographs, 174, Amer. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl
[11] R. R. Coifman, A. McIntosh, Y. Meyer, “L'intégrale de Cauchy définit un opérateur borné sur $L^2$ pour les courbes lipschitziennes”, Ann. of Math. (2), 116:2 (1982), 361–387 | DOI | MR | Zbl
[12] M. Costabel, “Boundary integral operators on Lipschitz domains: elementary results”, SIAM J. Math. Anal., 19:3 (1988), 613–626 | DOI | MR | Zbl
[13] B. E. J. Dahlberg, C. E. Kenig, “$L^p$ estimates for the three-dimensional systems of elastostatics in Lipschitz domains”, Lecture Notes in Pure Appl. Math., 122, M. Dekker, New York, 1990, 621–634 | MR
[14] B. E. J. Dahlberg, C. E. Kenig, G. C. Verchota, “Boundary value problems for the system of elastostatics on Lipschitz domains”, Duke Math. J., 57 (1988), 795–818 | DOI | MR | Zbl
[15] N. Danford, Dzh. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962
[16] R. Duduchava, F.-O. Speck, “Pseudodifferential operators on compact manifolds with Lipschitz boundary”, Math. Nachr., 160 (1993), 149–191 | DOI | MR | Zbl
[17] R. Duduchava, W. L. Wendland, “The Wiener–Hopf method for systems of pseudodifferential equations with an application to crack problems”, Integral Equations Operator Theory, 23:3 (1995), 294–335 | DOI | MR | Zbl
[18] J. Elschner, H.-K. Kaiser, J. Rehberg, G. Schmidt, $W^{1,q}$ regularity results for elliptic transmission problems on heterogeneous polyhedra, Preprint No. 1066, WIAS, Berlin, 2005 | MR
[19] J. Elschner, J. Rehrberg, G. Schmidt, Optimal regularity for elliptic transmission problems including $C^1$ interfaces, Preprint No. 1994, WIAS, Berlin, 2006 | MR
[20] G. I. Eskin, Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973 | MR | Zbl
[21] E. Fabes, O. Mendez, M. Mitrea, “Boundary layers on Sobolev–Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains”, J. Funct. Anal., 159:2 (1998), 323–368 | DOI | MR | Zbl
[22] W. Gao, “Layer potentials and boundary value problems for elliptic systems in Lipschitz domains”, J. Funct. Anal., 95:2 (1991), 377–399 | DOI | MR | Zbl
[23] D. Gilbarg, N. S. Trudinger, Ellipticheskie uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl
[24] D. Jerison, C. E. Kenig, “The inhomogeneous Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 130:1 (1995), 161–219 | DOI | MR | Zbl
[25] N. Kalton, M. Mitrea, “Stability results on interpolation scales of quasi-Banach spaces and applications”, Trans. Amer. Math. Soc., 350:10 (1998), 3903–3922 | DOI | MR | Zbl
[26] C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl
[27] V. A. Kondratev, “Granichnye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi tochkami”, Trudy MMO, 16, 1967, 209–292
[28] V. A. Kozlov, V. G. Mazżya, J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Math. Surveys Monographs, 52, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[29] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[30] D. Mitrea, M. Mitrea, “General second order strongly elliptic systems in low dimensional nonsmooth manifolds”, Harmonic Analysis and Boundary Value Problems (Fayetteville, AR, 2000), Contemp. Math., 227, 2001, 61–86 | DOI | MR
[31] D. Mitrea, M. Mitrea, M. Taylor, “Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds”, Mem. Amer. Math. Soc., 150, no. 713, Amer. Math. Soc., Providence, RI, 2001 | MR
[32] M. Mitrea, M. Taylor, “Boundary layer methods for Lipschitz domains in Riemannian manifolds”, J. Funct. Anal., 163:2 (1999), 181–251 | DOI | MR | Zbl
[33] M. Mitrea, M. Taylor, “Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev–Besov space results and the Poisson problem”, J. Funct. Anal., 176:1 (2000), 1–79 | DOI | MR | Zbl
[34] M. Mitrea, M. Taylor, “Sobolev and Besov space estimates for solutions to second order PDE on Lipschitz domains in manifolds with Dini or Hölder continuous metric tensors”, Comm. Partial Differential Equations, 30:1 (2005), 1–37 | DOI | MR | Zbl
[35] T. Muramatu, “On Besov spaces and Sobolev spaces of generalized functions defined on a general region”, Publ. Res. Inst. Math. Sci., 9 (1974), 325–396 | DOI | MR | Zbl
[36] S. A. Nazarov, B. A. Plamenevskii, Elliptic Problems in Domains with Piecewise–Smooth Boundaries, De Gruyter Expositions in Math., 13, Walter de Gruyter, Berlin, 1994 | MR
[37] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris; Academia, Prague, 1967 | MR | Zbl
[38] O. A. Oleinik, A. S. Shamaev, G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, Stud. Math. Appl., 26, North-Holland, Amsterdam, 1992 | MR
[39] B. V. Paltsev, “O smeshannoi zadache s neodnorodnymi granichnymi usloviyami dlya ellipticheskikh s parametrom uravnenii vtorogo poryadka v lipshitsevykh oblastyakh”, Matem. sb., 187:4 (1996), 59–116 | DOI | MR
[40] T. J. Ransford, “The spectrum of an interpolated operator and analytic multivalued functions”, Pacific J. Math., 121:2 (1986), 445–466 | DOI | MR | Zbl
[41] V. S. Rychkov, “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc. (2), 60:1 (1999), 237–257 | DOI | MR | Zbl
[42] G. Savaré, “Regularity and perturbation results for mixed second order elliptic problems”, Comm. Partial Differential Equations, 22:5–6 (1997), 869–899 | DOI | MR | Zbl
[43] G. Savaré, “Regularity results for elliptic equations in Lipschitz domains”, J. Funct. Anal., 152:1 (1998), 176–201 | DOI | MR | Zbl
[44] I. Ya. Shneiberg, “Spektralnye svoistva lineinykh operatorov v interpolyatsionnykh semeistvakh banakhovykh prostranstv”, Matem. issled., 9:2 (1974), 214–227 | MR
[45] B.-W. Schulze, The structure of operators on manifolds with polyhedral singularities, Preprint 2005/05, Univ. Potsdam, Inst. für Mathematik, Potsdam, 2005
[46] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR
[47] H. Triebel, “Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers”, Rev. Mat. Comput., 15:2 (2002), 475–524 | MR | Zbl
[48] G. Verchota, “Layer potentials and regularity for the Dirichlet problem for Laplace's equations in Lipschitz domains”, J. Funct. Anal., 59:2 (1984), 572–611 | DOI | MR | Zbl
[49] A. Tabacco Vignati, M. Vignati, “Spectral theory and complex interpolation”, J. Funct. Anal., 80:2 (1988), 383–397 | DOI | MR | Zbl
[50] M. I. Vishik, G. I. Eskin, “Uravneniya v svertkakh v ogranichennoi oblasti”, UMN, 20:3 (1965), 89–152 | MR | Zbl
[51] D. Z. Zanger, “The inhomogeneous Neumann problem in Lipschitz domains”, Comm. Partial Differential Equations, 25:9–10 (2000), 1771–1808 | DOI | MR | Zbl