Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 83-103

Voir la notice de l'article provenant de la source Math-Net.Ru

In a bounded Lipschitz domain in $\mathbb{R}^n$, we consider a second-order strongly elliptic system with symmetric principal part written in divergent form. We study the Neumann boundary value problem in a generalized variational (or weak) setting using the Lebesgue spaces $H^\sigma_p(\Omega)$ for solutions, where $p$ can differ from $2$ and $\sigma$ can differ from $1$. Using the tools of interpolation theory, we generalize the known theorem on the regularity of solutions, in which $p=2$ and $|\sigma-1|1/2$, and the corresponding theorem on the unique solvability of the problem (Savaré, 1998) to $p$ close to $2$. We compare this approach with the nonvariational approach accepted in numerous papers of the modern theory of boundary value problems in Lipschitz domains. We discuss the regularity of eigenfunctions of the Dirichlet, Neumann, and Poincaré–Steklov spectral problems.
Keywords: second-order strongly elliptic system, Dirichlet, Neumann, and Poincaré–Steklov boundary value problems, regularity of solutions, regularity of eigenfunctions.
Mots-clés : variational solution, interpolation, Lebesgue and Besov spaces
@article{FAA_2006_40_4_a7,
     author = {M. S. Agranovich},
     title = {Regularity of {Variational} {Solutions} to {Linear} {Boundary} {Value} {Problems} in {Lipschitz} {Domains}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {83--103},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a7/}
}
TY  - JOUR
AU  - M. S. Agranovich
TI  - Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 83
EP  - 103
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a7/
LA  - ru
ID  - FAA_2006_40_4_a7
ER  - 
%0 Journal Article
%A M. S. Agranovich
%T Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 83-103
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a7/
%G ru
%F FAA_2006_40_4_a7
M. S. Agranovich. Regularity of Variational Solutions to Linear Boundary Value Problems in Lipschitz Domains. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 83-103. http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a7/