The Growth Irregularity of Slowly Growing Entire Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 72-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that entire transcendental functions $f$ satisfying $$ \log M(r,f)=o(\log^2r),\qquad r\to\infty\quad (M(r,f):=\max_{|z|=r}|f(z)|) $$ necessarily have growth irregularity, which increases as the growth diminishes. In particular, if $1$, then the asymptotics $$ \log M(r,f)=\log^pr+o(\log^{2-p}r),\qquad r\to\infty, $$ is impossible. It becomes possible if "$o$" is replaced by "$O$."
Keywords: Clunie–Kövari theorem, Erdös–Kövari theorem, Hayman convexity theorem, Levin's strong proximate order.
Mots-clés : maximum term
@article{FAA_2006_40_4_a6,
     author = {I. V. Ostrovskii and A. E. \"Ureyen},
     title = {The {Growth} {Irregularity} of {Slowly} {Growing} {Entire} {Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {72--82},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a6/}
}
TY  - JOUR
AU  - I. V. Ostrovskii
AU  - A. E. Üreyen
TI  - The Growth Irregularity of Slowly Growing Entire Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 72
EP  - 82
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a6/
LA  - ru
ID  - FAA_2006_40_4_a6
ER  - 
%0 Journal Article
%A I. V. Ostrovskii
%A A. E. Üreyen
%T The Growth Irregularity of Slowly Growing Entire Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 72-82
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a6/
%G ru
%F FAA_2006_40_4_a6
I. V. Ostrovskii; A. E. Üreyen. The Growth Irregularity of Slowly Growing Entire Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 72-82. http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a6/

[1] F. F. Abi-Khuzam, “Hadamard convexity and multiplicity and location of zeros”, Trans. Amer. Math. Soc., 347:8 (1995), 3043–3051 | DOI | MR | Zbl

[2] V. S. Boichuk, A. A. Goldberg, “O teoreme o trekh pryamykh”, Matem. zametki, 15 (1974), 45–53 | MR

[3] M. L. Cartwright, Integral Functions, Cambridge Tracts in Math. and Math. Physics, 44, Cambridge, at the Univ. Press, Cambridge, 1956 | MR | Zbl

[4] J. Clunie, T. Kövari, “On integral functions having prescribed asymptotic growth, II”, Canad. J. Math., 20 (1968), 7–20 | DOI | MR | Zbl

[5] P. Erdös, T. Kövari, “On the maximum modulus of entire functions”, Acta Math. Acad. Sci. Hungar., 7 (1956), 305–317 | DOI | MR | Zbl

[6] A. A. Goldberg, B. Ya. Levin, I. V. Ostrovskii, “Tselye i meromorfnye funktsii”, Kompleksnyi analiz. Odna peremennaya – I, Itogi nauki i tekhniki, Sovremennye problemy matematiki, Fundamentalnye napravleniya, 85, VINITI, M., 1991, 5–185 | MR

[7] W. K. Hayman, “Note on Hadamard's convexity theorem”, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif, 1966), Amer. Math. Soc., Providence, R.I., 1968, 210–213 | DOI | MR

[8] B. Kjellberg, “The convexity theorem of Hadamard–Hayman”, Proc. Roy. Inst. of Techn., 1973, 87–114

[9] B. Ya. Levin, Raspredelenie nulei tselykh funktsii, GITTL, M., 1956

[10] P. C. Rosenbloom, “Probability and entire functions”, Studies in Math. Analysis and Related Topics, Stanford Univ. Press, Stanford, Calif., 1962, 325–332 | MR

[11] G. Valiron, Fonctions entières d'ordre fini et fonctions méromorphes, Monographies de “L'Enseignement Mathématique”, 8, Institut de Math., Université, Genève, 1960 | MR | Zbl