The Growth Irregularity of Slowly Growing Entire Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 72-82

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that entire transcendental functions $f$ satisfying $$ \log M(r,f)=o(\log^2r),\qquad r\to\infty\quad (M(r,f):=\max_{|z|=r}|f(z)|) $$ necessarily have growth irregularity, which increases as the growth diminishes. In particular, if $1$, then the asymptotics $$ \log M(r,f)=\log^pr+o(\log^{2-p}r),\qquad r\to\infty, $$ is impossible. It becomes possible if "$o$" is replaced by "$O$."
Keywords: Clunie–Kövari theorem, Erdös–Kövari theorem, Hayman convexity theorem, Levin's strong proximate order.
Mots-clés : maximum term
@article{FAA_2006_40_4_a6,
     author = {I. V. Ostrovskii and A. E. \"Ureyen},
     title = {The {Growth} {Irregularity} of {Slowly} {Growing} {Entire} {Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {72--82},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a6/}
}
TY  - JOUR
AU  - I. V. Ostrovskii
AU  - A. E. Üreyen
TI  - The Growth Irregularity of Slowly Growing Entire Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 72
EP  - 82
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a6/
LA  - ru
ID  - FAA_2006_40_4_a6
ER  - 
%0 Journal Article
%A I. V. Ostrovskii
%A A. E. Üreyen
%T The Growth Irregularity of Slowly Growing Entire Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 72-82
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a6/
%G ru
%F FAA_2006_40_4_a6
I. V. Ostrovskii; A. E. Üreyen. The Growth Irregularity of Slowly Growing Entire Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 72-82. http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a6/