Stability of Approximation Under the Action of Singular Integral Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 49-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T$ be a singular integral operator, and let $0\alpha1$. If $t>0$ and the functions $f$ and $Tf$ are both integrable, then there exists a function $g\in B_{\operatorname{Lip}_{\alpha}}(ct)$ such that $$ \|f-g\|_{L^1}\le C\operatorname{dist}_{L^1}(f,B_{\operatorname{Lip}_{\alpha}}(t)) $$ and $$ \|Tf-Tg\|_{L^1}\le C\|f-g\|_{L^1}+\operatorname{dist}_{L^1} (Tf,B_{\operatorname{Lip}_{\alpha}}(t)). $$ (Here $B_X(\tau)$ is the ball of radius $\tau$ and centered at zero in the space $X$; the constants $C$ and $c$ do not depend on $t$ and $f$.) The function $g$ is independent of $T$ and is constructed starting with $f$ by a nearly algorithmic procedure resembling the classical Calderón–Zygmund decomposition.
Keywords: Calderón–Zygmund decomposition, singular integral operator, covering theorem, wavelets.
@article{FAA_2006_40_4_a4,
     author = {S. V. Kislyakov and N. Ya. Kruglyak},
     title = {Stability of {Approximation} {Under} the {Action} of {Singular} {Integral} {Operators}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {49--64},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a4/}
}
TY  - JOUR
AU  - S. V. Kislyakov
AU  - N. Ya. Kruglyak
TI  - Stability of Approximation Under the Action of Singular Integral Operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 49
EP  - 64
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a4/
LA  - ru
ID  - FAA_2006_40_4_a4
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%A N. Ya. Kruglyak
%T Stability of Approximation Under the Action of Singular Integral Operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 49-64
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a4/
%G ru
%F FAA_2006_40_4_a4
S. V. Kislyakov; N. Ya. Kruglyak. Stability of Approximation Under the Action of Singular Integral Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 49-64. http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a4/

[1] G. Pisier, “Interpolation between $H^p$-spaces and noncommutative generalizations. I”, Pacific J. Math., 155:2 (1992), 341–368 | DOI | MR | Zbl

[2] G. Pisier, “Interpolation between $H^p$-spaces and noncommutative generalizations. II”, Rev. Mat. Iberoamericana, 9:2 (1993), 281–291 | DOI | MR | Zbl

[3] S. V. Kislyakov, Quanhua Xu, “Interpolation of weighted and vector-valued Hardy spaces”, Trans. Amer. Math. Soc., 343:1 (1994), 1–34 | DOI | MR | Zbl

[4] J. Bourgain, “Some consequences of Pisier's approach to interpolation”, Israel J. Math., 77:1–2 (1992), 165–185 | DOI | MR | Zbl

[5] S. V. Kislyakov, Kvankhua Shu, “Veschestvennaya interpolyatsiya i singulyarnye integraly”, Algebra i analiz, 8:4 (1996), 75–109 | MR | Zbl

[6] S. V. Kislyakov, Quanhua Xu, “Partial retractions for weighted Hardy spaces”, Studia Math., 138:3 (2000), 251–264 | MR | Zbl

[7] S. V. Kislyakov, “Interpolation of $H^p$-spaces: some recent developments”, Function Spaces, Interpolation Spaces, and Related Topics (Haifa, 1995), Israel Math. Conf. Proc., 13, Bar-Ilan Univ., Ramat Gan, 1999, 102–140 | MR | Zbl

[8] T. W. Gamelin, S. V. Kislyakov, “Uniform algebras as Banach spaces”, Handbook of the Geometry of Banach Spaces, Vol. 1, Elsevier, 2001, 671–706 | DOI | MR | Zbl

[9] A. P. Calderón, A. Zygmund, “On the existence of certain singular integrals”, Acta Math., 88 (1952), 85–139 | DOI | MR | Zbl

[10] N. Ya. Kruglyak, Issledovanie veschestvennogo metoda interpolyatsii, Diss. d.f.-m.n., 1996

[11] N. Ya. Kruglyak, “Gladkie analogi razlozheniya Kalderona–Zigmunda, kolichestvennye teoremy o pokrytiyakh i $K$-funktsional dlya pary $(L_q,\dot W_p^k)$”, Algebra i analiz, 8:4 (1996), 110–160 | MR | Zbl

[12] S. V. Kislyakov, N. Ya. Kruglyak, Stability of approximation under singular integrals, and Calderón–Zygmund type decompositions, PDMI Preprint No. 7, , 2005 www.pdmi.ras.ru/preprint/2005/index.html

[13] S. V. Kislyakov, N. Ya. Kruglyak, Stability of approximation under singular integrals and Calderón–Zygmund type decompositions. II, Preprint of the Erwin Schrödinger Institute No. 1734, , 2005 www.esi.ac.at/preprints/ESI-Preprints.html | MR

[14] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Series, 30, Princeton University Press, Princeton, NJ, 1970 | MR

[15] Y. Meyer, Ondelettes et opérateurs, v. I, II, Hermann, Paris, 1990 | MR | Zbl

[16] J. Bourgain, “Bounded orthogonal systems and the $\Lambda(p)$-set problem”, Acta Math., 162 (1989), 227–245 | DOI | MR | Zbl

[17] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Math., 61, SIAM, Philadelphia, PA, 1992 | MR | Zbl

[18] S. Campanato, “Proprieta di holderianita di alcune classi di funzioni”, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 175–188 | MR | Zbl