Stability of Approximation Under the Action of Singular Integral Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 49-64
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T$ be a singular integral operator, and let $0\alpha1$. If $t>0$ and the functions $f$ and $Tf$ are both integrable, then there exists a function $g\in B_{\operatorname{Lip}_{\alpha}}(ct)$ such that
$$
\|f-g\|_{L^1}\le C\operatorname{dist}_{L^1}(f,B_{\operatorname{Lip}_{\alpha}}(t))
$$
and
$$
\|Tf-Tg\|_{L^1}\le
C\|f-g\|_{L^1}+\operatorname{dist}_{L^1}
(Tf,B_{\operatorname{Lip}_{\alpha}}(t)).
$$
(Here $B_X(\tau)$ is the ball of radius $\tau$ and centered at zero in the space $X$; the constants $C$ and $c$ do not depend on $t$ and $f$.) The function $g$ is independent of $T$ and is constructed starting with $f$ by a nearly algorithmic procedure resembling the classical Calderón–Zygmund decomposition.
Keywords:
Calderón–Zygmund decomposition, singular integral operator, covering theorem, wavelets.
@article{FAA_2006_40_4_a4,
author = {S. V. Kislyakov and N. Ya. Kruglyak},
title = {Stability of {Approximation} {Under} the {Action} of {Singular} {Integral} {Operators}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {49--64},
publisher = {mathdoc},
volume = {40},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a4/}
}
TY - JOUR AU - S. V. Kislyakov AU - N. Ya. Kruglyak TI - Stability of Approximation Under the Action of Singular Integral Operators JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2006 SP - 49 EP - 64 VL - 40 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a4/ LA - ru ID - FAA_2006_40_4_a4 ER -
S. V. Kislyakov; N. Ya. Kruglyak. Stability of Approximation Under the Action of Singular Integral Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 49-64. http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a4/