On Functions Uniquely Determined by Their Asymptotic Expansion
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 33-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a maximal class of analytic functions. The elements of this class are uniquely determined by their asymptotic expansions. We also discuss the possibility of recovery of a function from the coefficients of its asymptotic series. In particular, we consider the problem of recovering by using Borel summation. The last published result in this direction was obtained by Alan Sokal in 1980, but his paper well known to physicists (in quantum field theory) seems to have remained unnoticed by mathematicians.
Keywords: Watson's uniqueness theorem, Gevrey expansions, Laplace transforms in complex domain, differential equations in complex domain.
@article{FAA_2006_40_4_a3,
     author = {V. P. Gurarii and D. W. H. Gillam},
     title = {On {Functions} {Uniquely} {Determined} by {Their} {Asymptotic} {Expansion}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a3/}
}
TY  - JOUR
AU  - V. P. Gurarii
AU  - D. W. H. Gillam
TI  - On Functions Uniquely Determined by Their Asymptotic Expansion
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 33
EP  - 48
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a3/
LA  - ru
ID  - FAA_2006_40_4_a3
ER  - 
%0 Journal Article
%A V. P. Gurarii
%A D. W. H. Gillam
%T On Functions Uniquely Determined by Their Asymptotic Expansion
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 33-48
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a3/
%G ru
%F FAA_2006_40_4_a3
V. P. Gurarii; D. W. H. Gillam. On Functions Uniquely Determined by Their Asymptotic Expansion. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 33-48. http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a3/

[1] M. J. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1965 | MR

[2] L. V. Ahlfors, Conformal Invariants. Topic in Geometric Function Theory, McGraw-Hill, New York–Düsseldorf–Johannesburg, 1973 | MR | Zbl

[3] T. Carleman, Les fonctions quasy-analytiques, Gauthier-Villars, Paris, 1926 | Zbl

[4] T. Carleman, “Extension d'un théorème de Liouville”, Acta Math., 48 (1926), 363–366 ; Édition Complète des Articles de Torsten Carleman, Inst. Math. Mittag-Leffler, Malmö, 1960, 271–274 | DOI | MR | Zbl

[5] M. Gevrey, “Sur la nature analytique des solutions des équations aux dérivées partielles”, Ann. Sci. Écol. Norm. Sup. (3), 35 (1918), 129–190 | DOI | MR | Zbl

[6] D. W. H. Gillam, V. Gurarii, On the Watson–Nevanlinna recovering theorem, gotovitsya k pechati

[7] S. Graffi, V. Grecchi, B. Simon, “Borel summability: Application to the anharmonic oscillator”, Phys. Lett., 32B (1970), 631–634 | DOI | MR

[8] G. H. Hardy, Divergent Series, Oxford: at the Clarendon Press, 1949 | MR | Zbl

[9] F. Nevanlinna, “Zur Theorie der Asymptotischen Potenzreihen”, Ann. Acad. Sci. Fenn. Ser. A, XII:3 (1919), 1–81

[10] J.-P. Ramis, Théorèmes d'indices Gevrey pour les équations différentielles ordinaires, Mem. Amer. Math. Soc., 48, no. 296, 1984 | MR

[11] J.-P. Ramis, “Séries divergentes et théories asymptotiques”, Bull. Soc. Math. France, 121 (1993) | MR | Zbl

[12] J.-P. Ramis, Y. Sibuya, “Hukuhara Domain and Fundamental Existence and Uniqueness Theorems for Asymptotic Solutions of Gevrey Type”, Asymptotic Analysis, 2 (1989), 39–94 | DOI | MR | Zbl

[13] J.-P. Ramis, Y. Sibuya, “A new proof of multisummability of formal solutions of non linear meromorphic differential equations”, Ann. Inst. Fourier, 44:3 (1994), 811–848 | DOI | MR | Zbl

[14] M. Sodin, “Lars Ahlfors' thesis”, Lectures in Memory of Lars Ahlfors, Israel Math. Conf. Proc. (Haifa, 1996), 14, Bar-Ilan Univ., Ramat Gan, 2000, 113–134 | MR | Zbl

[15] A. D. Sokal, “An improvement of Watson's theorem on Borel summability”, J. Math. Phys., 21:2 (1980), 261–263 | DOI | MR

[16] S. Warschawski, “On conformal mapping of infinite strips”, Trans. Amer. Math. Soc., 51 (1942), 280–335 | DOI | MR | Zbl

[17] G. N. Watson, “A theory of asymptotic series”, Phil. Trans. Roy. Soc. London, Ser. A, 211 (1912), 279–313 | DOI

[18] G. N. Watson, “The transformation of an asymptotic series into a convergent series of inverse factorial”, Circ. Math. Palermo Rend., 34 (1912), 41–88 | DOI | Zbl

[19] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl