On Functions Uniquely Determined by Their Asymptotic Expansion
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 33-48

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a maximal class of analytic functions. The elements of this class are uniquely determined by their asymptotic expansions. We also discuss the possibility of recovery of a function from the coefficients of its asymptotic series. In particular, we consider the problem of recovering by using Borel summation. The last published result in this direction was obtained by Alan Sokal in 1980, but his paper well known to physicists (in quantum field theory) seems to have remained unnoticed by mathematicians.
Keywords: Watson's uniqueness theorem, Gevrey expansions, Laplace transforms in complex domain, differential equations in complex domain.
@article{FAA_2006_40_4_a3,
     author = {V. P. Gurarii and D. W. H. Gillam},
     title = {On {Functions} {Uniquely} {Determined} by {Their} {Asymptotic} {Expansion}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a3/}
}
TY  - JOUR
AU  - V. P. Gurarii
AU  - D. W. H. Gillam
TI  - On Functions Uniquely Determined by Their Asymptotic Expansion
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 33
EP  - 48
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a3/
LA  - ru
ID  - FAA_2006_40_4_a3
ER  - 
%0 Journal Article
%A V. P. Gurarii
%A D. W. H. Gillam
%T On Functions Uniquely Determined by Their Asymptotic Expansion
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 33-48
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a3/
%G ru
%F FAA_2006_40_4_a3
V. P. Gurarii; D. W. H. Gillam. On Functions Uniquely Determined by Their Asymptotic Expansion. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 33-48. http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a3/