Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2006_40_4_a3, author = {V. P. Gurarii and D. W. H. Gillam}, title = {On {Functions} {Uniquely} {Determined} by {Their} {Asymptotic} {Expansion}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {33--48}, publisher = {mathdoc}, volume = {40}, number = {4}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a3/} }
TY - JOUR AU - V. P. Gurarii AU - D. W. H. Gillam TI - On Functions Uniquely Determined by Their Asymptotic Expansion JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2006 SP - 33 EP - 48 VL - 40 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a3/ LA - ru ID - FAA_2006_40_4_a3 ER -
V. P. Gurarii; D. W. H. Gillam. On Functions Uniquely Determined by Their Asymptotic Expansion. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 4, pp. 33-48. http://geodesic.mathdoc.fr/item/FAA_2006_40_4_a3/
[1] M. J. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1965 | MR
[2] L. V. Ahlfors, Conformal Invariants. Topic in Geometric Function Theory, McGraw-Hill, New York–Düsseldorf–Johannesburg, 1973 | MR | Zbl
[3] T. Carleman, Les fonctions quasy-analytiques, Gauthier-Villars, Paris, 1926 | Zbl
[4] T. Carleman, “Extension d'un théorème de Liouville”, Acta Math., 48 (1926), 363–366 ; Édition Complète des Articles de Torsten Carleman, Inst. Math. Mittag-Leffler, Malmö, 1960, 271–274 | DOI | MR | Zbl
[5] M. Gevrey, “Sur la nature analytique des solutions des équations aux dérivées partielles”, Ann. Sci. Écol. Norm. Sup. (3), 35 (1918), 129–190 | DOI | MR | Zbl
[6] D. W. H. Gillam, V. Gurarii, On the Watson–Nevanlinna recovering theorem, gotovitsya k pechati
[7] S. Graffi, V. Grecchi, B. Simon, “Borel summability: Application to the anharmonic oscillator”, Phys. Lett., 32B (1970), 631–634 | DOI | MR
[8] G. H. Hardy, Divergent Series, Oxford: at the Clarendon Press, 1949 | MR | Zbl
[9] F. Nevanlinna, “Zur Theorie der Asymptotischen Potenzreihen”, Ann. Acad. Sci. Fenn. Ser. A, XII:3 (1919), 1–81
[10] J.-P. Ramis, Théorèmes d'indices Gevrey pour les équations différentielles ordinaires, Mem. Amer. Math. Soc., 48, no. 296, 1984 | MR
[11] J.-P. Ramis, “Séries divergentes et théories asymptotiques”, Bull. Soc. Math. France, 121 (1993) | MR | Zbl
[12] J.-P. Ramis, Y. Sibuya, “Hukuhara Domain and Fundamental Existence and Uniqueness Theorems for Asymptotic Solutions of Gevrey Type”, Asymptotic Analysis, 2 (1989), 39–94 | DOI | MR | Zbl
[13] J.-P. Ramis, Y. Sibuya, “A new proof of multisummability of formal solutions of non linear meromorphic differential equations”, Ann. Inst. Fourier, 44:3 (1994), 811–848 | DOI | MR | Zbl
[14] M. Sodin, “Lars Ahlfors' thesis”, Lectures in Memory of Lars Ahlfors, Israel Math. Conf. Proc. (Haifa, 1996), 14, Bar-Ilan Univ., Ramat Gan, 2000, 113–134 | MR | Zbl
[15] A. D. Sokal, “An improvement of Watson's theorem on Borel summability”, J. Math. Phys., 21:2 (1980), 261–263 | DOI | MR
[16] S. Warschawski, “On conformal mapping of infinite strips”, Trans. Amer. Math. Soc., 51 (1942), 280–335 | DOI | MR | Zbl
[17] G. N. Watson, “A theory of asymptotic series”, Phil. Trans. Roy. Soc. London, Ser. A, 211 (1912), 279–313 | DOI
[18] G. N. Watson, “The transformation of an asymptotic series into a convergent series of inverse factorial”, Circ. Math. Palermo Rend., 34 (1912), 41–88 | DOI | Zbl
[19] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl