Quantum Inverse Scattering Method for the $q$-Boson Model and Symmetric Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 53-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to show that the quantum inverse scattering method for the so-called $q$-boson model has a nice interpretation in terms of the algebra of symmetric functions. In particular, in the case of the phase model (corresponding to $q=0$) the creation operator coincides (modulo a scalar factor) with the operator of multiplication by the generating function of complete homogeneous symmetric functions, and the wave functions are expressed via the Schur functions $s_\lambda(x)$. The general case of the $q$-boson model is related in a similar way to the Hall–Littlewood symmetric functions $P_\lambda(x;q^2)$.
Mots-clés : $q$-boson model
Keywords: phase model, quantum inverse scattering method, symmetric functions, Hall–Littlewood functions, Schur functions.
@article{FAA_2006_40_3_a5,
     author = {N. V. Tsilevich},
     title = {Quantum {Inverse} {Scattering} {Method} for the $q${-Boson} {Model} and {Symmetric} {Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a5/}
}
TY  - JOUR
AU  - N. V. Tsilevich
TI  - Quantum Inverse Scattering Method for the $q$-Boson Model and Symmetric Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 53
EP  - 65
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a5/
LA  - ru
ID  - FAA_2006_40_3_a5
ER  - 
%0 Journal Article
%A N. V. Tsilevich
%T Quantum Inverse Scattering Method for the $q$-Boson Model and Symmetric Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 53-65
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a5/
%G ru
%F FAA_2006_40_3_a5
N. V. Tsilevich. Quantum Inverse Scattering Method for the $q$-Boson Model and Symmetric Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 53-65. http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a5/

[1] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl

[2] P. P. Kulish, “Kontraktsiya kvantovykh algebr i $q$-ostsillyatory”, Teor. matem. fiz., 86 (1991), 157–160 | MR | Zbl

[3] N. M. Bogoliubov, Boxed plane partitions, bosons, and the quantum inverse scattering method, PDMI Preprint 1/2004, 2004

[4] N. M. Bogoliubov, R. K. Bullough, J. Timonen, “Critical behavior for correlated strongly coupled boson systems in $1+1$ dimensions”, Phys. Rev. Lett., 25 (1994), 3933–3936 | DOI | MR | Zbl

[5] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, “Correlators of the phase model”, Phys. Lett. A, 231 (1997), 347–352 | DOI | MR | Zbl

[6] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, “Correlation functions for a strongly correlated boson system”, Nucl. Phys. B, 516 [FS] (1998), 501–528 | DOI | MR | Zbl

[7] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[8] P. P. Kulish, E. V. Damaskinsky, “On the $q$-oscillator and the quantum algebra $\operatorname{su}_q(1,1)$”, J. Phys. A, 23 (1990), L415–L419 | DOI | MR | Zbl

[9] I. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Clarendon Press, Oxford, 1995 | MR | Zbl

[10] A. Okounkov, N. Reshetikhin, “Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram”, J. Amer. Math. Soc., 16 (2003), 581–603 | DOI | MR | Zbl