Keywords: phase model, quantum inverse scattering method, symmetric functions, Hall–Littlewood functions, Schur functions.
@article{FAA_2006_40_3_a5,
author = {N. V. Tsilevich},
title = {Quantum {Inverse} {Scattering} {Method} for the $q${-Boson} {Model} and {Symmetric} {Functions}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {53--65},
year = {2006},
volume = {40},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a5/}
}
N. V. Tsilevich. Quantum Inverse Scattering Method for the $q$-Boson Model and Symmetric Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 53-65. http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a5/
[1] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl
[2] P. P. Kulish, “Kontraktsiya kvantovykh algebr i $q$-ostsillyatory”, Teor. matem. fiz., 86 (1991), 157–160 | MR | Zbl
[3] N. M. Bogoliubov, Boxed plane partitions, bosons, and the quantum inverse scattering method, PDMI Preprint 1/2004, 2004
[4] N. M. Bogoliubov, R. K. Bullough, J. Timonen, “Critical behavior for correlated strongly coupled boson systems in $1+1$ dimensions”, Phys. Rev. Lett., 25 (1994), 3933–3936 | DOI | MR | Zbl
[5] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, “Correlators of the phase model”, Phys. Lett. A, 231 (1997), 347–352 | DOI | MR | Zbl
[6] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, “Correlation functions for a strongly correlated boson system”, Nucl. Phys. B, 516 [FS] (1998), 501–528 | DOI | MR | Zbl
[7] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[8] P. P. Kulish, E. V. Damaskinsky, “On the $q$-oscillator and the quantum algebra $\operatorname{su}_q(1,1)$”, J. Phys. A, 23 (1990), L415–L419 | DOI | MR | Zbl
[9] I. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Clarendon Press, Oxford, 1995 | MR | Zbl
[10] A. Okounkov, N. Reshetikhin, “Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram”, J. Amer. Math. Soc., 16 (2003), 581–603 | DOI | MR | Zbl