The Argument Shift Method and the Gaudin Model
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 30-43
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a family of maximal commutative subalgebras in the tensor product of $n$ copies of the universal enveloping algebra $U(\mathfrak{g})$ of a semisimple Lie algebra $\mathfrak{g}$. This family is parameterized by finite sequences $\mu$, $z_1,\dots,z_n$, where $\mu\in\mathfrak{g}^*$ and $z_i\in\mathbb{C}$. The construction presented here generalizes the famous construction of the higher Gaudin Hamiltonians due to Feigin, Frenkel, and Reshetikhin. For $n=1$, the corresponding commutative subalgebras in the Poisson algebra $S(\mathfrak{g})$ were obtained by Mishchenko and Fomenko with the help of the argument shift method. For commutative algebras of our family, we establish a connection between their representations in the tensor products of finite-dimensional $\mathfrak{g}$-modules and the Gaudin model.
Keywords:
Gaudin model, argument shift method, affine Kac–Moody algebra, critical level.
Mots-clés : Mishchenko–Fomenko subalgebra
Mots-clés : Mishchenko–Fomenko subalgebra
@article{FAA_2006_40_3_a3,
author = {L. G. Rybnikov},
title = {The {Argument} {Shift} {Method} and the {Gaudin} {Model}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {30--43},
publisher = {mathdoc},
volume = {40},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a3/}
}
L. G. Rybnikov. The Argument Shift Method and the Gaudin Model. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 30-43. http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a3/