The Argument Shift Method and the Gaudin Model
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 30-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a family of maximal commutative subalgebras in the tensor product of $n$ copies of the universal enveloping algebra $U(\mathfrak{g})$ of a semisimple Lie algebra $\mathfrak{g}$. This family is parameterized by finite sequences $\mu$, $z_1,\dots,z_n$, where $\mu\in\mathfrak{g}^*$ and $z_i\in\mathbb{C}$. The construction presented here generalizes the famous construction of the higher Gaudin Hamiltonians due to Feigin, Frenkel, and Reshetikhin. For $n=1$, the corresponding commutative subalgebras in the Poisson algebra $S(\mathfrak{g})$ were obtained by Mishchenko and Fomenko with the help of the argument shift method. For commutative algebras of our family, we establish a connection between their representations in the tensor products of finite-dimensional $\mathfrak{g}$-modules and the Gaudin model.
Keywords: Gaudin model, argument shift method, affine Kac–Moody algebra, critical level.
Mots-clés : Mishchenko–Fomenko subalgebra
@article{FAA_2006_40_3_a3,
     author = {L. G. Rybnikov},
     title = {The {Argument} {Shift} {Method} and the {Gaudin} {Model}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {30--43},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a3/}
}
TY  - JOUR
AU  - L. G. Rybnikov
TI  - The Argument Shift Method and the Gaudin Model
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 30
EP  - 43
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a3/
LA  - ru
ID  - FAA_2006_40_3_a3
ER  - 
%0 Journal Article
%A L. G. Rybnikov
%T The Argument Shift Method and the Gaudin Model
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 30-43
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a3/
%G ru
%F FAA_2006_40_3_a3
L. G. Rybnikov. The Argument Shift Method and the Gaudin Model. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 30-43. http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a3/

[1] A. V. Bolsinov, A. V. Borisov, “Soglasovannye skobki Puassona na algebrakh Li”, Matem. zametki, 72:1 (2002), 11–34 | DOI | MR | Zbl

[2] A. Beilinson, V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigen-sheaves, Preprint, http://www.ma.utexas.edu/~benzvi/BD

[3] B. Enriquez, V. Rubtsov, “Hitchin systems, higher Gaudin Hamiltonians and $r$-matrices”, Math. Res. Lett., 3:3 (1996), 343–357 ; http://arxiv.org/abs/alg-geom/9503 | DOI | MR | Zbl

[4] B. Feigin, E. Frenkel, “Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras”, Int. Jour. Mod. Phys., A7, Supplement 1A (1992), 197–215 | DOI | MR

[5] E. Frenkel, “Affine Algebras, Langlands Duality and Bethe Ansatz”, XIth International Congress of Mathematical Physics (Paris, 1994), Internat. Press, Cambridge, MA, 1995, 606–642 ; http://arxiv.org/q-alg/9506003 | MR | Zbl

[6] E. Frenkel, Lectures on Wakimoto modules, opers and the center at the critical level, http://arxiv.org/math.QA/0210029

[7] B. Feigin, E. Frenkel, N. Reshetikhin, “Gaudin model, Bethe Ansatz and critical level”, Comm. Math. Phys., 166 (1994), 27–62 ; http://arxiv.org/hep-th/9402022 | DOI | MR | Zbl

[8] M. Gaudin, “Diagonalisation d'une classe d'hamiltoniens de spin”, J. Physique, 37:10 (1976), 1087–1098 | DOI | MR

[9] M. Goden, Volnovaya funktsiya Bete, Mir, M., 1987 | MR

[10] A. S. Mischenko, A. T. Fomenko, “Integriruemost uravnenii Eilera na poluprostykh algebrakh Li”, Trudy semin. vekt. tenz. anal., 19 (1979), 3–94 | Zbl

[11] A. I. Molev, “Yangians and their applications”, Handbook of algebra, 3, North-Holland, Amsterdam, 2003, 907–959 ; http://arxiv.org/math.QA/0211288 | DOI | MR

[12] E. Mukhin, A. Varchenko, Norm of a Bethe vector and the Hessian of the master function, Preprint, http://arxiv.org/math.QA/0402349 | MR

[13] M. Mustata, “Jet schemes of locally complete intersection canonical singularities”, with an appendix by D. Eisenbud and E. Frenkel, Invent. Math., 145 (2001), 397–424 ; http://arxiv.org/math.AG/0008002 | DOI | MR | Zbl

[14] M. Nazarov, G. Olshanski, “Bethe Subalgebras in Twisted Yangians”, Comm. Math. Phys., 178:2 (1996), 483–506 ; http://arxiv.org/q-alg/9507003 | DOI | MR | Zbl

[15] V. Shuvalov, “O predelakh podalgebr Mischenko–Fomenko v algebrakh Puassona poluprostykh algebr Li”, Funkts. analiz i ego pril., 36:4 (2002), 55–64 | DOI | MR | Zbl

[16] A. A. Tarasov, “O nekotorykh maksimalnykh kommutativnykh podalgebrakh v universalnoi obertyvayuschei algebre algebry Li $gl_n$”, Matem. sb., 191:9 (2000), 115–122 | DOI | MR | Zbl

[17] A. A. Tarasov, “Maksimalnost nekotorykh kommutativnykh podalgebr v algebrakh Puassona poluprostykh algebr Li”, UMN, 57:5 (2002), 165–166 | DOI | MR | Zbl

[18] A. A. Tarasov, “O edinstvennosti podnyatiya maksimalnykh kommutativnykh podalgebr iz algebry Puassona–Li v obertyvayuschuyu algebru”, Matem. sb., 194:7 (2003), 155–160 | DOI | MR | Zbl

[19] E. B. Vinberg, “O nekotorykh kommutativnykh podalgebrakh universalnoi obertyvayuschei algebry”, Izv. AN SSSR, ser. matem., 54:1 (1990), 3–25 | MR