Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2006_40_3_a3, author = {L. G. Rybnikov}, title = {The {Argument} {Shift} {Method} and the {Gaudin} {Model}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {30--43}, publisher = {mathdoc}, volume = {40}, number = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a3/} }
L. G. Rybnikov. The Argument Shift Method and the Gaudin Model. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 30-43. http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a3/
[1] A. V. Bolsinov, A. V. Borisov, “Soglasovannye skobki Puassona na algebrakh Li”, Matem. zametki, 72:1 (2002), 11–34 | DOI | MR | Zbl
[2] A. Beilinson, V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigen-sheaves, Preprint, http://www.ma.utexas.edu/~benzvi/BD
[3] B. Enriquez, V. Rubtsov, “Hitchin systems, higher Gaudin Hamiltonians and $r$-matrices”, Math. Res. Lett., 3:3 (1996), 343–357 ; http://arxiv.org/abs/alg-geom/9503 | DOI | MR | Zbl
[4] B. Feigin, E. Frenkel, “Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras”, Int. Jour. Mod. Phys., A7, Supplement 1A (1992), 197–215 | DOI | MR
[5] E. Frenkel, “Affine Algebras, Langlands Duality and Bethe Ansatz”, XIth International Congress of Mathematical Physics (Paris, 1994), Internat. Press, Cambridge, MA, 1995, 606–642 ; http://arxiv.org/q-alg/9506003 | MR | Zbl
[6] E. Frenkel, Lectures on Wakimoto modules, opers and the center at the critical level, http://arxiv.org/math.QA/0210029
[7] B. Feigin, E. Frenkel, N. Reshetikhin, “Gaudin model, Bethe Ansatz and critical level”, Comm. Math. Phys., 166 (1994), 27–62 ; http://arxiv.org/hep-th/9402022 | DOI | MR | Zbl
[8] M. Gaudin, “Diagonalisation d'une classe d'hamiltoniens de spin”, J. Physique, 37:10 (1976), 1087–1098 | DOI | MR
[9] M. Goden, Volnovaya funktsiya Bete, Mir, M., 1987 | MR
[10] A. S. Mischenko, A. T. Fomenko, “Integriruemost uravnenii Eilera na poluprostykh algebrakh Li”, Trudy semin. vekt. tenz. anal., 19 (1979), 3–94 | Zbl
[11] A. I. Molev, “Yangians and their applications”, Handbook of algebra, 3, North-Holland, Amsterdam, 2003, 907–959 ; http://arxiv.org/math.QA/0211288 | DOI | MR
[12] E. Mukhin, A. Varchenko, Norm of a Bethe vector and the Hessian of the master function, Preprint, http://arxiv.org/math.QA/0402349 | MR
[13] M. Mustata, “Jet schemes of locally complete intersection canonical singularities”, with an appendix by D. Eisenbud and E. Frenkel, Invent. Math., 145 (2001), 397–424 ; http://arxiv.org/math.AG/0008002 | DOI | MR | Zbl
[14] M. Nazarov, G. Olshanski, “Bethe Subalgebras in Twisted Yangians”, Comm. Math. Phys., 178:2 (1996), 483–506 ; http://arxiv.org/q-alg/9507003 | DOI | MR | Zbl
[15] V. Shuvalov, “O predelakh podalgebr Mischenko–Fomenko v algebrakh Puassona poluprostykh algebr Li”, Funkts. analiz i ego pril., 36:4 (2002), 55–64 | DOI | MR | Zbl
[16] A. A. Tarasov, “O nekotorykh maksimalnykh kommutativnykh podalgebrakh v universalnoi obertyvayuschei algebre algebry Li $gl_n$”, Matem. sb., 191:9 (2000), 115–122 | DOI | MR | Zbl
[17] A. A. Tarasov, “Maksimalnost nekotorykh kommutativnykh podalgebr v algebrakh Puassona poluprostykh algebr Li”, UMN, 57:5 (2002), 165–166 | DOI | MR | Zbl
[18] A. A. Tarasov, “O edinstvennosti podnyatiya maksimalnykh kommutativnykh podalgebr iz algebry Puassona–Li v obertyvayuschuyu algebru”, Matem. sb., 194:7 (2003), 155–160 | DOI | MR | Zbl
[19] E. B. Vinberg, “O nekotorykh kommutativnykh podalgebrakh universalnoi obertyvayuschei algebry”, Izv. AN SSSR, ser. matem., 54:1 (1990), 3–25 | MR