Disjointness, Divisibility, and Quasi-Simplicity of Measure-Preserving Actions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 85-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

For weakly mixing flows, quasi-simplicity of order $2$ implies quasi-simplicity of all orders. A uniformly divisible automorphism and a $2$-quasi-simple automorphism are disjoint.
Keywords: weakly mixing flow, divisible ergodic system, quasi-simplicity, disjointness, pairwise independent joinings.
@article{FAA_2006_40_3_a11,
     author = {V. V. Ryzhikov and J. Thouvenot},
     title = {Disjointness, {Divisibility,} and {Quasi-Simplicity} of {Measure-Preserving} {Actions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--89},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a11/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
AU  - J. Thouvenot
TI  - Disjointness, Divisibility, and Quasi-Simplicity of Measure-Preserving Actions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 85
EP  - 89
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a11/
LA  - ru
ID  - FAA_2006_40_3_a11
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%A J. Thouvenot
%T Disjointness, Divisibility, and Quasi-Simplicity of Measure-Preserving Actions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 85-89
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a11/
%G ru
%F FAA_2006_40_3_a11
V. V. Ryzhikov; J. Thouvenot. Disjointness, Divisibility, and Quasi-Simplicity of Measure-Preserving Actions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 3, pp. 85-89. http://geodesic.mathdoc.fr/item/FAA_2006_40_3_a11/

[1] A. M. Vershik, Zap. nauch. sem. LOMI, 72, 1977, 26–62

[2] V. V. Ryzhikov, Matem. sb., 188:2 (1997), 67–94 | DOI | MR | Zbl

[3] E. Glasner, B. Host, D. Rudolph, Israel J. Math., 78 (1992), 131–142 | DOI | MR | Zbl

[4] A. del Junco, M. Lemanczyk, Studia Math., 133 (1999), 249–256 | MR | Zbl

[5] J. L. King, J.-P. Thouvenot, J. Analyse. Math., 56 (1991), 211–230 | DOI | MR | Zbl

[6] M. Ratner, Ann. of Math. (2), 115:3 (1982), 597–614 | DOI | MR | Zbl

[7] V. V. Ryzhikov, J. Dynam. Control Systems, 3:1 (1997), 111–127 | DOI | MR | Zbl

[8] J.-P. Thouvenot, Ergodic Theory and Its Connections with Harmonic Analysis, Proceedings of the Alexandria 1993 Conference, London Math. Soc. Lecture Note Ser., 205, Cambridge Univ. Press, Cambridge, 1995, 207–235 | MR | Zbl

[9] J.-P. Thouvenot, Colloq. Math., 84/85, part 2 (2000), 481–483 | DOI | MR

[10] R. Zimmer, Ill. J. Math., 20 (1976), 555–588 | MR | Zbl