Noncommutative Riesz Theorem and Weak Burnside Type Theorem on Twisted Conjugacy
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 44-54

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper consists of two parts. In the first part, we prove a noncommutative analog of the Riesz(–Markov–Kakutani) theorem on representation of functionals on an algebra of continuous functions by regular measures on the underlying space. In the second part, using this result, we prove a weak version of a Burnside type theorem on twisted conjugacy for arbitrary discrete groups.
@article{FAA_2006_40_2_a4,
     author = {E. V. Troitskii},
     title = {Noncommutative {Riesz} {Theorem} and {Weak} {Burnside} {Type} {Theorem} on {Twisted} {Conjugacy}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {44--54},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a4/}
}
TY  - JOUR
AU  - E. V. Troitskii
TI  - Noncommutative Riesz Theorem and Weak Burnside Type Theorem on Twisted Conjugacy
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 44
EP  - 54
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a4/
LA  - ru
ID  - FAA_2006_40_2_a4
ER  - 
%0 Journal Article
%A E. V. Troitskii
%T Noncommutative Riesz Theorem and Weak Burnside Type Theorem on Twisted Conjugacy
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 44-54
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a4/
%G ru
%F FAA_2006_40_2_a4
E. V. Troitskii. Noncommutative Riesz Theorem and Weak Burnside Type Theorem on Twisted Conjugacy. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 44-54. http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a4/