Structure of Modules over the Stereotype Algebra $\mathcal{L}(X)$ of Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 1-12

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that every module $M$ over the algebra $\mathcal{L}(X)$ of operators on a finite-dimensional space $X$ can be represented as the tensor product of $X$ by some vector space $E$, $M\cong E\otimes X$. We generalize this assertion to the case of topological modules by proving that if $X$ is a stereotype space with the stereotype approximation property, then for each stereotype module $M$ over the stereotype algebra $\mathcal{L}(X)$ of operators on $X$ there exists a unique (up to isomorphism) stereotype space $E$ such that $M$ lies between two natural stereotype tensor products of $E$ by $X$, $$ E\circledast X\subseteq M\subseteq E\odot X. $$ As a corollary, we show that if $X$ is a nuclear Fréchet space with a basis, then each Fréchet module $M$ over the stereotype operator algebra $\mathcal{L}(X)$ can be uniquely represented as the projective tensor product of $X$ by some Fréchet space $E$, $M=E\,\widehat{\otimes}\kern1pt X$.
@article{FAA_2006_40_2_a0,
     author = {S. S. Akbarov},
     title = {Structure of {Modules} over the {Stereotype} {Algebra} $\mathcal{L}(X)$ of {Operators}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a0/}
}
TY  - JOUR
AU  - S. S. Akbarov
TI  - Structure of Modules over the Stereotype Algebra $\mathcal{L}(X)$ of Operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 1
EP  - 12
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a0/
LA  - ru
ID  - FAA_2006_40_2_a0
ER  - 
%0 Journal Article
%A S. S. Akbarov
%T Structure of Modules over the Stereotype Algebra $\mathcal{L}(X)$ of Operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 1-12
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a0/
%G ru
%F FAA_2006_40_2_a0
S. S. Akbarov. Structure of Modules over the Stereotype Algebra $\mathcal{L}(X)$ of Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 1-12. http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a0/