@article{FAA_2006_40_2_a0,
author = {S. S. Akbarov},
title = {Structure of {Modules} over the {Stereotype} {Algebra} $\mathcal{L}(X)$ of {Operators}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--12},
year = {2006},
volume = {40},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a0/}
}
S. S. Akbarov. Structure of Modules over the Stereotype Algebra $\mathcal{L}(X)$ of Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 1-12. http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a0/
[1] R. Pirs, Assotsiativnye algebry, Mir, M., 1986 | MR
[2] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR
[3] J. W. Calkin, “Two-sided ideals and congruences in the ring of bounded operators in Hilbert space”, Ann. of Math., 42 (1941), 839–873 | DOI | MR | Zbl
[4] N. J. Laustsen, R. J. Loy, C. J. Read, “The lattice of closed ideals in the Banach algebra of operators on certain Banach spaces”, J. Funct. Anal., 214 (2004), 106–131 | DOI | MR
[5] S. S. Akbarov, “Stereotype spaces, algebras, homologies: An outline”, Topological Homology, ed. A. Ya. Helemskii, Nova Science Publishers, 2000, 1–29 | MR
[6] S. S. Akbarov, “Pontryagin duality in the theory of topological vector spaces and in topological algebra”, J. Math. Sci., 113:2 (2003), 179–349 | DOI | MR | Zbl
[7] S. S. Akbarov, “Pontryagin duality and topological algebras”, Topological Algebras, Their Applications, and Related Topics, Banach Center Publications series, 67, 2005, 55–71 | DOI | MR | Zbl