Structure of Modules over the Stereotype Algebra $\mathcal{L}(X)$ of Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 1-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that every module $M$ over the algebra $\mathcal{L}(X)$ of operators on a finite-dimensional space $X$ can be represented as the tensor product of $X$ by some vector space $E$, $M\cong E\otimes X$. We generalize this assertion to the case of topological modules by proving that if $X$ is a stereotype space with the stereotype approximation property, then for each stereotype module $M$ over the stereotype algebra $\mathcal{L}(X)$ of operators on $X$ there exists a unique (up to isomorphism) stereotype space $E$ such that $M$ lies between two natural stereotype tensor products of $E$ by $X$, $$ E\circledast X\subseteq M\subseteq E\odot X. $$ As a corollary, we show that if $X$ is a nuclear Fréchet space with a basis, then each Fréchet module $M$ over the stereotype operator algebra $\mathcal{L}(X)$ can be uniquely represented as the projective tensor product of $X$ by some Fréchet space $E$, $M=E\,\widehat{\otimes}\kern1pt X$.
@article{FAA_2006_40_2_a0,
     author = {S. S. Akbarov},
     title = {Structure of {Modules} over the {Stereotype} {Algebra} $\mathcal{L}(X)$ of {Operators}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a0/}
}
TY  - JOUR
AU  - S. S. Akbarov
TI  - Structure of Modules over the Stereotype Algebra $\mathcal{L}(X)$ of Operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 1
EP  - 12
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a0/
LA  - ru
ID  - FAA_2006_40_2_a0
ER  - 
%0 Journal Article
%A S. S. Akbarov
%T Structure of Modules over the Stereotype Algebra $\mathcal{L}(X)$ of Operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 1-12
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a0/
%G ru
%F FAA_2006_40_2_a0
S. S. Akbarov. Structure of Modules over the Stereotype Algebra $\mathcal{L}(X)$ of Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 1-12. http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a0/

[1] R. Pirs, Assotsiativnye algebry, Mir, M., 1986 | MR

[2] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR

[3] J. W. Calkin, “Two-sided ideals and congruences in the ring of bounded operators in Hilbert space”, Ann. of Math., 42 (1941), 839–873 | DOI | MR | Zbl

[4] N. J. Laustsen, R. J. Loy, C. J. Read, “The lattice of closed ideals in the Banach algebra of operators on certain Banach spaces”, J. Funct. Anal., 214 (2004), 106–131 | DOI | MR

[5] S. S. Akbarov, “Stereotype spaces, algebras, homologies: An outline”, Topological Homology, ed. A. Ya. Helemskii, Nova Science Publishers, 2000, 1–29 | MR

[6] S. S. Akbarov, “Pontryagin duality in the theory of topological vector spaces and in topological algebra”, J. Math. Sci., 113:2 (2003), 179–349 | DOI | MR | Zbl

[7] S. S. Akbarov, “Pontryagin duality and topological algebras”, Topological Algebras, Their Applications, and Related Topics, Banach Center Publications series, 67, 2005, 55–71 | DOI | MR | Zbl