Structure of Modules over the Stereotype Algebra $\mathcal{L}(X)$ of Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 1-12
Voir la notice de l'article provenant de la source Math-Net.Ru
It is well known that every module $M$ over the algebra $\mathcal{L}(X)$ of operators on a finite-dimensional space $X$ can be represented as the tensor product of $X$ by some vector space $E$, $M\cong E\otimes X$. We generalize this assertion to the case of topological modules by proving that if $X$ is a stereotype space with the stereotype approximation property, then for each stereotype module $M$ over the stereotype algebra $\mathcal{L}(X)$ of operators on $X$ there exists a unique (up to isomorphism) stereotype space $E$ such that $M$ lies between two natural stereotype tensor products of $E$ by $X$,
$$
E\circledast X\subseteq M\subseteq E\odot X.
$$
As a corollary, we show that if $X$ is a nuclear Fréchet space with a basis, then each Fréchet
module $M$ over the stereotype operator algebra $\mathcal{L}(X)$ can be uniquely represented as the
projective tensor product of $X$ by some Fréchet space $E$, $M=E\,\widehat{\otimes}\kern1pt X$.
@article{FAA_2006_40_2_a0,
author = {S. S. Akbarov},
title = {Structure of {Modules} over the {Stereotype} {Algebra} $\mathcal{L}(X)$ of {Operators}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--12},
publisher = {mathdoc},
volume = {40},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a0/}
}
S. S. Akbarov. Structure of Modules over the Stereotype Algebra $\mathcal{L}(X)$ of Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 2, pp. 1-12. http://geodesic.mathdoc.fr/item/FAA_2006_40_2_a0/