On the Number of Rational Points on a Strictly Convex Curve
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 1, pp. 30-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\gamma$ be a bounded convex curve on the plane. Then $\#(\gamma\cap(\mathbb{Z}/n)^2)=o(n^{2/3})$. This strengthens the classical result due to Jarník (the upper bound $cn^{2/3}$) and disproves the conjecture on the existence of a so-called universal Jarník curve.
Keywords: convex curve, lattice point, affine length.
@article{FAA_2006_40_1_a2,
     author = {F. V. Petrov},
     title = {On the {Number} of {Rational} {Points} on a {Strictly} {Convex} {Curve}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {30--42},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a2/}
}
TY  - JOUR
AU  - F. V. Petrov
TI  - On the Number of Rational Points on a Strictly Convex Curve
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 30
EP  - 42
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a2/
LA  - ru
ID  - FAA_2006_40_1_a2
ER  - 
%0 Journal Article
%A F. V. Petrov
%T On the Number of Rational Points on a Strictly Convex Curve
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 30-42
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a2/
%G ru
%F FAA_2006_40_1_a2
F. V. Petrov. On the Number of Rational Points on a Strictly Convex Curve. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 1, pp. 30-42. http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a2/

[1] V. Jarník, “Über die Gitterpunkte auf konvexen Kurven”, Math. Z., 24 (1926), 500–518 | DOI | MR | Zbl

[2] A. Plagne, “A uniform version of Jarník's theorem”, Acta Arith., 87:3 (1999), 255–267 | DOI | MR | Zbl

[3] H. P. F. Swinnerton-Dyer, “The number of lattice points on a convex curve”, J. Number Theory, 6 (1974), 128–135 | DOI | MR | Zbl

[4] E. Bombieri, J. Pila, “The number of integral points on arcs and ovals”, Duke Math. J., 59 (1989), 337–357 | DOI | MR | Zbl

[5] A. M. Vershik, “Predelnaya forma vypuklykh tselochislennykh mnogougolnikov i blizkie voprosy”, Funkts. analiz i ego pril., 28:1 (1994), 16–25 | DOI | MR | Zbl

[6] I. Barany, “The limit shape of convex lattice polygons”, Discrete Comput. Geom., 13:3–4 (1995), 279–295 | DOI | MR | Zbl

[7] Zh. Favar, Kurs lokalnoi differentsialnoi geometrii, IL, M., 1960 | MR

[8] A. Eskin, C. McMullen, “Mixing, counting and equidistribution in Lie groups”, Duke Math. J., 71:1 (1993), 181–209 | DOI | MR | Zbl

[9] A. Ya. Khinchin, Tsepnye drobi, Fizmatgiz, M., 1961