Nonlocal Hamiltonian Operators of Hydrodynamic Type with Flat Metrics, Integrable Hierarchies, and the Associativity Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 1, pp. 14-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the problem of describing all nonlocal Hamiltonian operators of hydrodynamic type with flat metrics. This problem is equivalent to describing all flat submanifolds with flat normal bundle in a pseudo-Euclidean space. We prove that every such Hamiltonian operator (or the corresponding submanifold) specifies a pencil of compatible Poisson brackets, generates bihamiltonian integrable hierarchies of hydrodynamic type, and also defines a family of integrals in involution. We prove that there is a natural special class of such Hamiltonian operators (submanifolds) exactly described by the associativity equations of two-dimensional topological quantum field theory (the Witten–Dijkgraaf–Verlinde–Verlinde and Dubrovin equations). We show that each $N$-dimensional Frobenius manifold can locally be represented by a special flat $N$-dimensional submanifold with flat normal bundle in a $2N$-dimensional pseudo-Euclidean space. This submanifold is uniquely determined up to motions.
@article{FAA_2006_40_1_a1,
     author = {O. I. Mokhov},
     title = {Nonlocal {Hamiltonian} {Operators} of {Hydrodynamic} {Type} with {Flat} {Metrics,} {Integrable} {Hierarchies,} and the {Associativity} {Equations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {14--29},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a1/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Nonlocal Hamiltonian Operators of Hydrodynamic Type with Flat Metrics, Integrable Hierarchies, and the Associativity Equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 14
EP  - 29
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a1/
LA  - ru
ID  - FAA_2006_40_1_a1
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Nonlocal Hamiltonian Operators of Hydrodynamic Type with Flat Metrics, Integrable Hierarchies, and the Associativity Equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 14-29
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a1/
%G ru
%F FAA_2006_40_1_a1
O. I. Mokhov. Nonlocal Hamiltonian Operators of Hydrodynamic Type with Flat Metrics, Integrable Hierarchies, and the Associativity Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 1, pp. 14-29. http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a1/

[1] E. V. Ferapontov, “Differentsialnaya geometriya nelokalnykh gamiltonovykh operatorov gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 25:3 (1991), 37–49 | MR | Zbl

[2] B. A. Dubrovin, S. P. Novikov, “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, Dokl. AN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[3] O. I. Mokhov, E. V. Ferapontov, “O nelokalnykh gamiltonovykh operatorakh gidrodinamicheskogo tipa, svyazannykh s metrikami postoyannoi krivizny”, UMN, 45:3 (1990), 191–192 | MR | Zbl

[4] F. Magri, “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[5] A. Ya. Maltsev, S. P. Novikov, “On the local systems Hamiltonian in the weakly nonlocal Poisson brackets”, Phys. D, 156:1–2 (2001), 53–80 ; http://arxiv.org/abs/nlin.SI/0006030 | DOI | MR | Zbl

[6] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum groups, Lecture Notes in Math., 1620, Springer-Verlag, Berlin, 1996, 120–348 ; http://arxiv.org/abs/hep-th/9407018 | DOI | MR | Zbl

[7] M. Kontsevich, Yu. I. Manin, “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Comm. Math. Phys., 164 (1994), 525–562 | DOI | MR | Zbl

[8] O. I. Mokhov, “Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations”, Topics in Topology and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 170, ed. S. P. Novikov, Amer. Math. Soc., Providence, RI, 1995, 121–151 ; http://arxiv.org/abs/hep-th/9503076 | MR

[9] O. I. Mokhov, Simplekticheskaya i puassonova geometriya na prostranstvakh petel gladkikh mnogoobrazii i integriruemye uravneniya, IKI, Moskva–Izhevsk, 2004 | MR