Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2006_40_1_a1, author = {O. I. Mokhov}, title = {Nonlocal {Hamiltonian} {Operators} of {Hydrodynamic} {Type} with {Flat} {Metrics,} {Integrable} {Hierarchies,} and the {Associativity} {Equations}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {14--29}, publisher = {mathdoc}, volume = {40}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a1/} }
TY - JOUR AU - O. I. Mokhov TI - Nonlocal Hamiltonian Operators of Hydrodynamic Type with Flat Metrics, Integrable Hierarchies, and the Associativity Equations JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2006 SP - 14 EP - 29 VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a1/ LA - ru ID - FAA_2006_40_1_a1 ER -
%0 Journal Article %A O. I. Mokhov %T Nonlocal Hamiltonian Operators of Hydrodynamic Type with Flat Metrics, Integrable Hierarchies, and the Associativity Equations %J Funkcionalʹnyj analiz i ego priloženiâ %D 2006 %P 14-29 %V 40 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a1/ %G ru %F FAA_2006_40_1_a1
O. I. Mokhov. Nonlocal Hamiltonian Operators of Hydrodynamic Type with Flat Metrics, Integrable Hierarchies, and the Associativity Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 1, pp. 14-29. http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a1/
[1] E. V. Ferapontov, “Differentsialnaya geometriya nelokalnykh gamiltonovykh operatorov gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 25:3 (1991), 37–49 | MR | Zbl
[2] B. A. Dubrovin, S. P. Novikov, “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, Dokl. AN SSSR, 270:4 (1983), 781–785 | MR | Zbl
[3] O. I. Mokhov, E. V. Ferapontov, “O nelokalnykh gamiltonovykh operatorakh gidrodinamicheskogo tipa, svyazannykh s metrikami postoyannoi krivizny”, UMN, 45:3 (1990), 191–192 | MR | Zbl
[4] F. Magri, “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl
[5] A. Ya. Maltsev, S. P. Novikov, “On the local systems Hamiltonian in the weakly nonlocal Poisson brackets”, Phys. D, 156:1–2 (2001), 53–80 ; http://arxiv.org/abs/nlin.SI/0006030 | DOI | MR | Zbl
[6] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum groups, Lecture Notes in Math., 1620, Springer-Verlag, Berlin, 1996, 120–348 ; http://arxiv.org/abs/hep-th/9407018 | DOI | MR | Zbl
[7] M. Kontsevich, Yu. I. Manin, “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Comm. Math. Phys., 164 (1994), 525–562 | DOI | MR | Zbl
[8] O. I. Mokhov, “Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations”, Topics in Topology and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 170, ed. S. P. Novikov, Amer. Math. Soc., Providence, RI, 1995, 121–151 ; http://arxiv.org/abs/hep-th/9503076 | MR
[9] O. I. Mokhov, Simplekticheskaya i puassonova geometriya na prostranstvakh petel gladkikh mnogoobrazii i integriruemye uravneniya, IKI, Moskva–Izhevsk, 2004 | MR