$J$-Invariants of Plane Curves and Framed Chord Diagrams
Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Arnold defined $J$-invariants of general plane curves as functions on classes of such curves that jump in a prescribed way when passing through curves with self-tangency. The coalgebra of framed chord diagrams introduced here has been invented for the description of finite-order $J$-invariants; it generalizes the Hopf algebra of ordinary chord diagrams, which is used in the description of finite-order knot invariants. The framing of a chord in a diagram is determined by the type of self-tangency: direct self-tangency is labeled by $0$, and inverse self-tangency is labeled by $1$. The coalgebra of framed chord diagrams unifies the classes of $J^+$- and $J^-$-invariants, so far considered separately. The intersection graph of a framed chord diagram determines a homomorphism of this coalgebra into the Hopf algebra of framed graphs, which we also introduce. The combinatorial elements of the above description admit a natural complexification, which gives hints concerning the conjectural complexification of Vassiliev invariants.
@article{FAA_2006_40_1_a0,
     author = {S. K. Lando},
     title = {$J${-Invariants} of {Plane} {Curves} and {Framed} {Chord} {Diagrams}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a0/}
}
TY  - JOUR
AU  - S. K. Lando
TI  - $J$-Invariants of Plane Curves and Framed Chord Diagrams
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2006
SP  - 1
EP  - 13
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a0/
LA  - ru
ID  - FAA_2006_40_1_a0
ER  - 
%0 Journal Article
%A S. K. Lando
%T $J$-Invariants of Plane Curves and Framed Chord Diagrams
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2006
%P 1-13
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a0/
%G ru
%F FAA_2006_40_1_a0
S. K. Lando. $J$-Invariants of Plane Curves and Framed Chord Diagrams. Funkcionalʹnyj analiz i ego priloženiâ, Tome 40 (2006) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/FAA_2006_40_1_a0/

[1] V. I. Arnold, Topological Invariants of Plane Curves and Caustics, Univ. Lecture Ser., 5, Amer. Math. Soc., Providence, RI, 1994 | DOI | MR

[2] V. I. Arnold, “Plane curves, their invariants, perestroikas and classifications”, Singularities and Bifurcations, Adv. Soviet Math., 21, Amer. Math. Soc., Providence, RI, 1994, 33–91 | MR | Zbl

[3] V. I. Arnold, “Symplectization, complexification and mathematical trinities”, Fields Inst. Commun., 24, Amer. Math. Soc., Providence, RI, 1999, 23–37 | MR | Zbl

[4] D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34 (1995), 423–472 | DOI | MR | Zbl

[5] I. Beck, “Cycle decompositions by transpositions”, J. Combin. Theory Ser. A, 23 (1977), 198–207 | DOI | MR | Zbl

[6] R. Fenn, P. Taylor, “Introducing doodles”, Topology of Low-Dimensional Manifolds, Lecture Notes in Math., 722, ed. R. Fenn, Springer-Verlag, Heidelberg, 1977, 37–43 | DOI | MR

[7] V. Goryunov, “Vassiliev type invariants in Arnold's $J^+$-theory of plane curves without direct self-tangencies”, Topology, 37 (1998), 603–620 | DOI | MR | Zbl

[8] J. W. Hill, “Vassiliev-type invariants of plane fronts without dangerous self-tangencies”, C. R. Acad. Sci. Paris Sér. Math., 324:5 (1997), 537–542 | DOI | MR | Zbl

[9] M. E. Kazaryan, “Invarianty pervogo poryadka tipa strannosti dlya ploskikh krivykh”, Trudy MIRAN, 221, 1998, 213–224 | MR | Zbl

[10] R. Kirby, “A calculus of framed links in $S^3$”, Invent. Math., 45 (1978), 35–56 | DOI | MR | Zbl

[11] B. Khesin, A. Rosly, “Symplectic geometry on moduli spaces of holomorphic bundles over complex surfaces”, Fields Inst. Commun., 24 (1999), 311–323, Amer. Math. Soc., Providence, RI | MR

[12] S. Lando, “On a Hopf algebra in graph theory”, J. Combin. Theory Ser. B, 80 (2000), 104–121 | DOI | MR | Zbl

[13] A. Losev, Yu. Manin, “New moduli spaces of pointed curves and pencils of flat connections”, Michigan Math. J., 48 (2000), 443–472 | DOI | MR | Zbl

[14] B. Mellor, “A few weight systems arising from intersection graphs”, Michigan Math. J., 51:3 (2003), 509–536 | DOI | MR | Zbl

[15] G. Moran, “Chords in a circle and a linear algebra over $\operatorname{GF}(2)$”, J. Combin. Theory Ser. A, 37 (1984), 239–247 | DOI | MR | Zbl

[16] V. V. Prasolov, A. B. Sosinskii, Uzly, zatsepleniya, kosy i trekhmernye mnogoobraziya, MTsNMO, M., 1997

[17] E. Soboleva, “Vassiliev knot invariants coming from Lie algebras and 4-invariants”, J. Knot Theory Ramifications, 10 (2001), 161–169 | DOI | MR | Zbl

[18] V. A. Vassiliev, “Invariants of ornaments”, Singularities and Bifurcations, Adv. Soviet Math., 21, Amer. Math. Soc., Providence, RI, 1994, 225–262 | MR | Zbl

[19] V. A. Vasilev, Topologiya dopolnenii k diskriminantam, Fazis, M., 1998 | MR

[20] V. A. Vassiliev, “On finite order invariants of triple point free plane curves”, Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, Amer. Math. Soc. Transl. Ser. 2, 194, 1999, 275–300 | MR | Zbl