On Degrees of Growth of Finitely Generated Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 86-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for an arbitrary function $\rho$ of subexponential growth there exists a group $G$ of intermediate growth whose growth function satisfies the inequality $v_{G,S}(n)\ge\rho(n)$ for all $n$. For every prime $p$, one can take $G$ to be a $p$-group; one can also take a torsion-free group $G$. We also discuss some generalizations of this assertion.
Keywords: growth of groups, intermediate growth, Grigorchuk group.
@article{FAA_2005_39_4_a9,
     author = {A. G. Ershler},
     title = {On {Degrees} of {Growth} of {Finitely} {Generated} {Groups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {86--89},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a9/}
}
TY  - JOUR
AU  - A. G. Ershler
TI  - On Degrees of Growth of Finitely Generated Groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 86
EP  - 89
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a9/
LA  - ru
ID  - FAA_2005_39_4_a9
ER  - 
%0 Journal Article
%A A. G. Ershler
%T On Degrees of Growth of Finitely Generated Groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 86-89
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a9/
%G ru
%F FAA_2005_39_4_a9
A. G. Ershler. On Degrees of Growth of Finitely Generated Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 86-89. http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a9/

[1] Erschler A., “Boundary behavior for groups of subexponential growth”, Ann. Math., 160:3 (2004), 1183–1210 | DOI | MR

[2] Grigorchuk R. I., Funkts. analiz i ego pril., 14:1 (1980), 53–54 | MR | Zbl

[3] Grigorchuk R. I., Izv. AN SSSR, 48:5 (1984), 939–985 | MR

[4] Grigorchuk R. I., Matem. sb., 126(168):2 (1985), 194–214 | MR | Zbl

[5] Grigorchuk R. I., Gruppy promezhutochnogo rosta i ikh prilozheniya, Dokt. diss., 1985

[6] Grigorchuk R. I., Kurchanov P. F., Itogi nauki i tekhniki. Sovremennye problemy matematiki, Fundamentalnye napravleniya, 58, VINITI, M., 1990, 191–256 | MR

[7] Gromov M., Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–73 | DOI | MR

[8] de la Harpe P., Topics in Geometric Group Theory, The University of Chicago Press, 2000 | MR

[9] Milnor J., J. Differential Geometry, 2 (1968), 447–449 | MR | Zbl

[10] Shneyerson L., “Soobschenie na konferentsii”, International Conference on Group Theory: Combinatorial, Geometric, and Dynamical Aspects of Infinite Groups (Gaeta, 1–6 iyunya 2003)

[11] Tits J., J. Algebra, 20 (1979), 250–270 | DOI | MR

[12] Wolf J. A., J. Differential Geometry, 2 (1968), 421–446 | MR | Zbl