On Degrees of Growth of Finitely Generated Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 86-89

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for an arbitrary function $\rho$ of subexponential growth there exists a group $G$ of intermediate growth whose growth function satisfies the inequality $v_{G,S}(n)\ge\rho(n)$ for all $n$. For every prime $p$, one can take $G$ to be a $p$-group; one can also take a torsion-free group $G$. We also discuss some generalizations of this assertion.
Keywords: growth of groups, intermediate growth, Grigorchuk group.
@article{FAA_2005_39_4_a9,
     author = {A. G. Ershler},
     title = {On {Degrees} of {Growth} of {Finitely} {Generated} {Groups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {86--89},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a9/}
}
TY  - JOUR
AU  - A. G. Ershler
TI  - On Degrees of Growth of Finitely Generated Groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 86
EP  - 89
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a9/
LA  - ru
ID  - FAA_2005_39_4_a9
ER  - 
%0 Journal Article
%A A. G. Ershler
%T On Degrees of Growth of Finitely Generated Groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 86-89
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a9/
%G ru
%F FAA_2005_39_4_a9
A. G. Ershler. On Degrees of Growth of Finitely Generated Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 86-89. http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a9/