On Degrees of Growth of Finitely Generated Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 86-89
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that for an arbitrary function $\rho$ of subexponential growth there exists a group $G$ of intermediate growth whose growth function satisfies the inequality $v_{G,S}(n)\ge\rho(n)$ for all $n$. For every prime $p$, one can take $G$ to be a $p$-group; one can also take a torsion-free group $G$. We also discuss some generalizations of this assertion.
Keywords:
growth of groups, intermediate growth, Grigorchuk group.
@article{FAA_2005_39_4_a9,
author = {A. G. Ershler},
title = {On {Degrees} of {Growth} of {Finitely} {Generated} {Groups}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {86--89},
publisher = {mathdoc},
volume = {39},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a9/}
}
A. G. Ershler. On Degrees of Growth of Finitely Generated Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 86-89. http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a9/