Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2005_39_4_a5, author = {Yu. G. Safarov}, title = {The {Berezin} and {G\aa} rding {Inequalities}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {69--77}, publisher = {mathdoc}, volume = {39}, number = {4}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a5/} }
Yu. G. Safarov. The Berezin and G\aa rding Inequalities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 69-77. http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a5/
[1] Berezin F. A., “Vypuklye funktsii ot operatorov”, Matem. sb., 88 (1972), 268–276 | MR | Zbl
[2] Berezin F. A., “Kovariantnye i kontravariantnye simvoly operatorov”, Izv. AN SSSR, ser. matem., 36 (1972), 1134–1167 | MR | Zbl
[3] Dimassi M., Sjöstrand J., Spectral Asymptotics in the Semiclassical Limit, Cambridge University Press, 1999 | MR | Zbl
[4] Evans W. D., Lewis R. T., Siedentop H., Solovej J. P., “Counting eigenvalues using coherent states with an application to Dirac and Schrödinger operators in the semiclassical limit”, Ark. Mat., 34 (1996), 265–283 | DOI | MR | Zbl
[5] Ekeland I., Temam R., Convex Analysis and Variational Problems, Stud. Math. Appl., 1, Elsevier, North-Holland, 1976 | MR | Zbl
[6] Giles J. R., Convex Analysis with Application in the Differentiation of Convex Functions, Res. Notes Math., 58, Pitman, 1982 | MR | Zbl
[7] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, t. 3, Mir, M., 1987 | MR
[8] Laptev A., Safarov Yu., “A generalization of the Berezin–Lieb inequality for convex functions”, Contemporary Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 175, Amer. Math. Soc., Providence, R.I., 1996, 69–80 | MR
[9] Laptev A., Safarov Yu., “Szegő type limit theorems”, J. Funct. Anal., 138 (1996), 544–559 | DOI | MR | Zbl
[10] Safarov Y., “Pseudodifferential operators and linear connections”, Proc. London Math. Soc., 74 (1997), 379–417 | DOI | MR
[11] Safarov Yu., Vassiliev D., The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, Transl. Math. Monographs, 155, Amer. Math. Soc., Providence, R.I., 1996 | DOI | MR | Zbl
[12] Tataru D., “On the Fefferman–Phong inequality and related problems”, Comm. Partial Differential Equations, 27:11–12 (2002), 2101–2138 | DOI | MR | Zbl