The Berezin and G\aa rding Inequalities
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 69-77
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\varphi$ be a convex function on $\mathbb{C}$, let $\mathcal{L}(\sigma)$ be a pseudodifferential operator with symbol $\sigma$, let $\Lambda_\sigma$ be the set of its eigenvalues, and let $m(\lambda)$ be the multiplicity of an eigenvalue $\lambda\in\Lambda_\sigma$. Under certain natural assumptions about properties of pseudodifferential operators, we prove that
$\sum_{\lambda\in\Lambda_\sigma}m(\lambda)\varphi(\lambda)\le\operatorname{Re}\operatorname{Tr}\mathcal{L}(\varphi(\sigma))+R$, where $R$ is an error term of the same order as the remainder term in the Gårding inequality.
Keywords:
convex function, operator inequality.
@article{FAA_2005_39_4_a5,
author = {Yu. G. Safarov},
title = {The {Berezin} and {G\aa} rding {Inequalities}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {69--77},
publisher = {mathdoc},
volume = {39},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a5/}
}
Yu. G. Safarov. The Berezin and G\aa rding Inequalities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 69-77. http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a5/