Removable Singularities of Solutions of the Minimal Surface Equation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 62-68
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $G$ is a bounded domain in $\mathbb{R}^n$ ($n\ge 2$), $E\ne G$ is a relatively closed
set in $G$, and $0\alpha1$. We prove that $E$ is removable for solutions of the minimal surface equation in the class $C^{1,\alpha}(G)_{\operatorname{loc}}$ if and only if the ($n-1+\alpha$)-dimensional Hausdorff measure of $E$ is zero.
Keywords:
removable singularity, minimal surface, Hölder class, Hausdorff measure.
@article{FAA_2005_39_4_a4,
author = {A. V. Pokrovskii},
title = {Removable {Singularities} of {Solutions} of the {Minimal} {Surface} {Equation}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {62--68},
publisher = {mathdoc},
volume = {39},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a4/}
}
A. V. Pokrovskii. Removable Singularities of Solutions of the Minimal Surface Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 62-68. http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a4/