Removable Singularities of Solutions of the Minimal Surface Equation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 62-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $G$ is a bounded domain in $\mathbb{R}^n$ ($n\ge 2$), $E\ne G$ is a relatively closed set in $G$, and $0\alpha1$. We prove that $E$ is removable for solutions of the minimal surface equation in the class $C^{1,\alpha}(G)_{\operatorname{loc}}$ if and only if the ($n-1+\alpha$)-dimensional Hausdorff measure of $E$ is zero.
Keywords: removable singularity, minimal surface, Hölder class, Hausdorff measure.
@article{FAA_2005_39_4_a4,
     author = {A. V. Pokrovskii},
     title = {Removable {Singularities} of {Solutions} of the {Minimal} {Surface} {Equation}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {62--68},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a4/}
}
TY  - JOUR
AU  - A. V. Pokrovskii
TI  - Removable Singularities of Solutions of the Minimal Surface Equation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 62
EP  - 68
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a4/
LA  - ru
ID  - FAA_2005_39_4_a4
ER  - 
%0 Journal Article
%A A. V. Pokrovskii
%T Removable Singularities of Solutions of the Minimal Surface Equation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 62-68
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a4/
%G ru
%F FAA_2005_39_4_a4
A. V. Pokrovskii. Removable Singularities of Solutions of the Minimal Surface Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 4, pp. 62-68. http://geodesic.mathdoc.fr/item/FAA_2005_39_4_a4/

[1] Bers L., “Isolated singularities of minimal surfaces”, Ann. Math., 53 (1951), 364–386 | DOI | MR | Zbl

[2] Nitsche J. C. C., “On new results in the theory of minimal surfaces”, Bull. Amer. Math. Soc., 71 (1965), 195–270 | DOI | MR | Zbl

[3] De Giorgi E., Stampacchia G., “Sulla singolarità eliminabili delle ipersuperficie minimali”, Atti Accad. Naz. Lincei, Rend., Cl. Sci. Fis. Mat. Nat., 38 (1965), 352–357 | MR | Zbl

[4] Miranda M., “Sulla singolarità eliminabili delle soluzioni dell'equazione delle superfici minime”, Ann. Sc. Norm. Sup. Pisa, Ser. IV, 4 (1977), 129–132 | MR | Zbl

[5] Dzhusti E., Minimalnye poverkhnosti i funktsii ogranichennoi variatsii, Mir, M., 1989

[6] Anzellotti G., “Dirichlet problem and removable singularities for functional with linear growth”, Boll. Un. Mat. Ital. C (5), 81 (1981), 141–159 | MR

[7] Simon L., “On a theorem of De Giorgi and Stampacchia”, Math. Z., 155 (1977), 199–204 | DOI | MR | Zbl

[8] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985

[9] Dolzhenko E. P., “O predstavlenii nepreryvnykh garmonicheskikh funktsii v vide potentsialov”, Izv. AN SSSR, ser. matem., 28:5 (1964), 1113–1130 | Zbl

[10] Dolzhenko E. P., “Ob osobykh tochkakh nepreryvnykh garmonicheskikh funktsii”, Izv. AN SSSR, ser. matem., 28:6 (1964), 1251–1270 | Zbl

[11] Harvey R., Polking J. C., “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125:1/2 (1970), 39–56 | DOI | MR | Zbl

[12] Tarkhanov N. N., Ryad Lorana dlya reshenii ellipticheskikh sistem, Nauka, Novosibirsk, 1991 | MR | Zbl

[13] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR

[14] Littman W., Stampaccia G., Weinberger H. F., “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola. Norm. Sup. Pisa, 17:3 (1963), 43–77 | MR | Zbl

[15] Lieberman G. M., “Sharp form of estimates for subsolutions and supersolutions of quasilinear elliptic equations involving measures”, Commun. Partial Diff. Equations, 18:7–8 (1993), 1191–1212 | DOI | MR | Zbl

[16] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl