Translation Invariant Asymptotic Homomorphisms and Extensions of $C^*$-Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 87-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ and $B$ be $C^*$-algebras, let $A$ be separable, and let $B$ be $\sigma$-unital and stable. We introduce the notion of translation invariance for asymptotic homomorphisms from $SA=C_0(\mathbb{R})\otimes A$ to $B$ and show that the Connes–Higson construction applied to any extension of $A$ by $B$ is homotopic to a translation invariant asymptotic homomorphism. In the other direction we give a construction which produces extensions of $A$ by $B$ from a translation invariant asymptotic homomorphism. This leads to our main result that the homotopy classes of extensions coincide with the homotopy classes of translation invariant asymptotic homomorphisms.
Keywords: $C^*$-algebra, asymptotic homomorphism, extension of $C^*$-algebras, homotopy equivalence of extensions, homotopy equivalence of asymptotic homomorphisms.
Mots-clés : Connes–Higson construction
@article{FAA_2005_39_3_a9,
     author = {V. M. Manuilov and K. Thomsen},
     title = {Translation {Invariant} {Asymptotic} {Homomorphisms} and {Extensions} of $C^*${-Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {87--91},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a9/}
}
TY  - JOUR
AU  - V. M. Manuilov
AU  - K. Thomsen
TI  - Translation Invariant Asymptotic Homomorphisms and Extensions of $C^*$-Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 87
EP  - 91
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a9/
LA  - ru
ID  - FAA_2005_39_3_a9
ER  - 
%0 Journal Article
%A V. M. Manuilov
%A K. Thomsen
%T Translation Invariant Asymptotic Homomorphisms and Extensions of $C^*$-Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 87-91
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a9/
%G ru
%F FAA_2005_39_3_a9
V. M. Manuilov; K. Thomsen. Translation Invariant Asymptotic Homomorphisms and Extensions of $C^*$-Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 87-91. http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a9/

[1] Arveson W., Duke Math. J., 44 (1977), 329–355 | DOI | MR | Zbl

[2] Anderson J., Ann. of Math., 107 (1978), 455–458 | DOI | MR

[3] Brown L. G., Douglas R. G., Fillmore P. A., Ann. of Math., 105 (1977), 265–324 | DOI | MR

[4] Connes A., Higson N., C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 101–106 | MR | Zbl

[5] Higson N., Index theory and operator algebras (Boulder, CO, 1991), Contemp. Math., 148, Amer. Math. Soc., Providence, RI, 1993, 67–86 | DOI | MR | Zbl

[6] Higson N., Kasparov G., Trout J., Adv. Math., 135 (1998), 1–40 | DOI | MR | Zbl

[7] Kasparov G. G., Izv. AN SSSR, ser. matem., 44 (1980), 571–636 | MR | Zbl

[8] Kirchberg E., Invent. Math., 112 (1993), 449–489 | DOI | MR | Zbl

[9] Manuilov V. M., Thomsen K., J. Funct. Anal., 213 (2004), 154–175 | DOI | MR | Zbl

[10] Manuilov V. M., Thomsen K., Proc. London Math. Soc., 88 (2004), 455–478 | DOI | MR | Zbl

[11] Manuilov V. M., Thomsen K., K-Theory, 32 (2004), 101–138 | DOI | MR | Zbl