On Causal Invertibility with Respect to a Cone of Integral-Difference Operators in Vector Function Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 84-87

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{S}$ be a cone in $\mathbb{R}^n$. A bounded linear operator $T\colon L_p(\mathbb{R}^n)\to L_p(\mathbb{R}^n)$ is said to be causal with respect to $\mathbb{S}$ if the implication $$ x(s)=0\;\;(s\in W-\mathbb{S})\implies(Tx)(s)=0\;\;(s\in W-\mathbb{S}) $$ is valid for any $x\in L_p(\mathbb{R}^n)$ and any open subset $W\subseteq\mathbb{R}^n$. The set of all causal operators is a Banach algebra. We describe the spectrum of the operator $$ (Tx)(t)=\sum_{n=1}^\infty a_n x(t-t_n)+ \int_{\mathbb{S}}g(s)x(t-s)\,ds,\qquad t\in\mathbb{R}^n, $$ in this algebra. Here $x$ ranges in a Banach space $\mathbb{E}$, the $a_n$ are bounded linear operators in $\mathbb{E}$, and the function $g$ ranges in the set of bounded operators in $\mathbb{E}$.
Keywords: causal invertibility, causal operator, difference operator, integral operator, Gelfand transform, tensor product, light cone.
Mots-clés : convolution
@article{FAA_2005_39_3_a8,
     author = {V. G. Kurbatov},
     title = {On {Causal} {Invertibility} with {Respect} to a {Cone} of {Integral-Difference} {Operators} in {Vector} {Function} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {84--87},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a8/}
}
TY  - JOUR
AU  - V. G. Kurbatov
TI  - On Causal Invertibility with Respect to a Cone of Integral-Difference Operators in Vector Function Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 84
EP  - 87
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a8/
LA  - ru
ID  - FAA_2005_39_3_a8
ER  - 
%0 Journal Article
%A V. G. Kurbatov
%T On Causal Invertibility with Respect to a Cone of Integral-Difference Operators in Vector Function Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 84-87
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a8/
%G ru
%F FAA_2005_39_3_a8
V. G. Kurbatov. On Causal Invertibility with Respect to a Cone of Integral-Difference Operators in Vector Function Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 84-87. http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a8/