On Causal Invertibility with Respect to a Cone of Integral-Difference Operators in Vector Function Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 84-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{S}$ be a cone in $\mathbb{R}^n$. A bounded linear operator $T\colon L_p(\mathbb{R}^n)\to L_p(\mathbb{R}^n)$ is said to be causal with respect to $\mathbb{S}$ if the implication $$ x(s)=0\;\;(s\in W-\mathbb{S})\implies(Tx)(s)=0\;\;(s\in W-\mathbb{S}) $$ is valid for any $x\in L_p(\mathbb{R}^n)$ and any open subset $W\subseteq\mathbb{R}^n$. The set of all causal operators is a Banach algebra. We describe the spectrum of the operator $$ (Tx)(t)=\sum_{n=1}^\infty a_n x(t-t_n)+ \int_{\mathbb{S}}g(s)x(t-s)\,ds,\qquad t\in\mathbb{R}^n, $$ in this algebra. Here $x$ ranges in a Banach space $\mathbb{E}$, the $a_n$ are bounded linear operators in $\mathbb{E}$, and the function $g$ ranges in the set of bounded operators in $\mathbb{E}$.
Keywords: causal invertibility, causal operator, difference operator, integral operator, Gelfand transform, tensor product, light cone.
Mots-clés : convolution
@article{FAA_2005_39_3_a8,
     author = {V. G. Kurbatov},
     title = {On {Causal} {Invertibility} with {Respect} to a {Cone} of {Integral-Difference} {Operators} in {Vector} {Function} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {84--87},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a8/}
}
TY  - JOUR
AU  - V. G. Kurbatov
TI  - On Causal Invertibility with Respect to a Cone of Integral-Difference Operators in Vector Function Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 84
EP  - 87
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a8/
LA  - ru
ID  - FAA_2005_39_3_a8
ER  - 
%0 Journal Article
%A V. G. Kurbatov
%T On Causal Invertibility with Respect to a Cone of Integral-Difference Operators in Vector Function Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 84-87
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a8/
%G ru
%F FAA_2005_39_3_a8
V. G. Kurbatov. On Causal Invertibility with Respect to a Cone of Integral-Difference Operators in Vector Function Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 84-87. http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a8/

[1] Burbaki N., Integrirovanie. Mery na lokalno kompaktnykh prostranstvakh. Prodolzhenie mery. Integrirovanie mer. Mery na otdelimykh prostranstvakh, Nauka, M., 1977

[2] Gripenberg G., Londen S.-O., Staffans O., Volterra Integral and Functional Equations, Cambridge Univ. Press, Cambridge–New York, 1990 | MR | Zbl

[3] Kolmanovskii V., Myshkis A., Applied Theory of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht–Boston–London, 1992 | MR

[4] Kurbatov V. G., Functional Differential Operators and Equations, Kluwer Academic Publishers, Dordrecht–Boston–London, 1999 | MR | Zbl

[5] Kamenskii G. A., Myshkis A. D., Nonlinear Anal., 34:2 (1998), 283–287 | DOI | MR

[6] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[7] Kurbatov V. G., Studenikin A. A., Funct. Differ. Equ., 4:3–4 (1997), 295–327 | MR | Zbl

[8] Studenikin A. A., Operatory svertki s meroi, skontsentrirovannoi v podpolugruppe, Dep. v VINITI 19.06.98, No1871-V98, Lipetsk, 1998

[9] Skopin V. A., Funct. Differ. Equ., 7:3–4 (2000), 335–371 | MR | Zbl

[10] Skopin V. A., Differentsialnye uravneniya, 37:9 (2001), 1265–1272 | MR | Zbl

[11] Krishtal I. A., Vestnik VGU, ser. fiz. matem., 2002, no. 1, 143–150

[12] Antonevich A. B., Lebedev A. V., Trudy S.-Peterburg. matem. o-va, 6, 1998, 34–140 | MR

[13] Skubachevskii A. L., Elliptic Functional Differential Equations and Applications, Operator Theory, 91, Birkhäuser, Basel–Boston–Berlin, 1997 | MR | Zbl

[14] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960 | MR

[15] Burbaki N., Spektralnaya teoriya, Mir, M., 1972 | MR | Zbl