On the Convergence of Formal Solutions of a System of Partial Differential Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 64-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a version of the classical problem on the convergence of formal solutions of systems of partial differential equations. A necessary and sufficient condition for the convergence of a given formal solution (found by any method) is proved. This convergence criterion applies to systems of partial differential equations (possibly, nonlinear) solved for the highest-order derivatives or, which is most important, “almost solved for the highest-order derivatives.”
Keywords: systems of partial differential equations, ordered semigroup $\mathbb{Z}^n_{\geqslant 0}$, system of partial differential equations solved for the highest-order derivatives, system of partial differential equations “almost solved for the highest-order derivatives”.
Mots-clés : convergence of formal solutions
@article{FAA_2005_39_3_a5,
     author = {S. P. Chulkov},
     title = {On the {Convergence} of {Formal} {Solutions} of a {System} of {Partial} {Differential} {Equations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {64--75},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a5/}
}
TY  - JOUR
AU  - S. P. Chulkov
TI  - On the Convergence of Formal Solutions of a System of Partial Differential Equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 64
EP  - 75
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a5/
LA  - ru
ID  - FAA_2005_39_3_a5
ER  - 
%0 Journal Article
%A S. P. Chulkov
%T On the Convergence of Formal Solutions of a System of Partial Differential Equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 64-75
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a5/
%G ru
%F FAA_2005_39_3_a5
S. P. Chulkov. On the Convergence of Formal Solutions of a System of Partial Differential Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 64-75. http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a5/

[1] Riquier C., Les systèmes d'èquations aux derivées partielles, Gauthier-Villars, Paris, 1910 | MR

[2] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii. Teoriya sovmestnosti sistem differentsialnykh uravnenii v polnykh differentsialakh i v chastnykh proizvodnykh, Gostekhizdat, M.-L., 1948 | MR

[3] Palamodov V. P., “Differentsialnye operatory v klasse skhodyaschikhsya stepennykh ryadov”, Funkts. analiz i ego pril., 2:3 (1968), 58–69 | MR | Zbl

[4] Khovanskii A. G., Chulkov S. P., “Polinom Gilberta dlya sistem lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh s analiticheskimi koeffitsientami”, Izv. RAN. Ser. matem., 70:1 (2006), 163–182 | DOI | MR | Zbl

[5] Khovanskii A. G., Chulkov S. P., “Polinomy Gilberta i Gilberta–Samyuelya i uravneniya v chastnykh proizvodnykh”, Matem. zametki, 77:1 (2005), 141–151 | DOI | MR | Zbl

[6] Ovsyannikov L. V., “Abstraktnaya forma teoremy Koshi–Kovalevskoi i ee prilozheniya”, Uravneniya s chastnymi proizvodnymi, Trudy konferentsii (Novosibirsk, 1978), Nauka, Sib. otd., Novosibirsk, 1980, 88–94 | MR

[7] Pate T. H., “A direct iterative method for an abstract Cauchy–Kowalewsky theorem”, Indiana Univ. Math J., 30:3 (1981), 415–425 | DOI | MR | Zbl

[8] Treves F., “An abstract nonlinear Cauchy–Kovalevska theorem”, Trans. Amer. Math. Soc., 150 (1970), 77–92 | DOI | MR | Zbl

[9] Nirenberg L., “An abstract form of the nonlinear Cauchy–Kowalewski theorem”, Collection of articles dedicated to S. S. Chern and D. C. Spencer of their sixtieth birthdays, J. Differential Geom., 6 (1972), 561–576 | DOI | MR | Zbl

[10] Nishida T., “A note on a theorem of Nirenberg”, J. Differential Geom., 12 (1977), 629–633 | DOI | MR | Zbl

[11] Zaitseva M. I., “O sovokupnosti uporyadochenii abelevoi gruppy”, UMN, 8:1 (1953), 135–137 | MR | Zbl

[12] Trevisan G., “Classificazione dei semplici ordinamenti di un gruppo libero commutativo con $N$ generatori”, Rend. Sem. Mat. Univ. Padova, 22 (1953), 143–156 | MR | Zbl