Isotropic Hypersurfaces and Minimal Extensions of Lipschitz Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 28-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence and uniqueness theorem for isotropic hypersurfaces with prescribed boundary in Lorentzian warped products is proved. The proof is based on minimal Lipschitz extensions of functions.
Mots-clés : Lorentzian space
Keywords: isotropic surface, Lipschitz function, minimal extension of a Lipschitz function.
@article{FAA_2005_39_3_a2,
     author = {A. A. Klyachin and V. M. Miklyukov},
     title = {Isotropic {Hypersurfaces} and {Minimal} {Extensions} of {Lipschitz} {Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {28--36},
     year = {2005},
     volume = {39},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a2/}
}
TY  - JOUR
AU  - A. A. Klyachin
AU  - V. M. Miklyukov
TI  - Isotropic Hypersurfaces and Minimal Extensions of Lipschitz Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 28
EP  - 36
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a2/
LA  - ru
ID  - FAA_2005_39_3_a2
ER  - 
%0 Journal Article
%A A. A. Klyachin
%A V. M. Miklyukov
%T Isotropic Hypersurfaces and Minimal Extensions of Lipschitz Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 28-36
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a2/
%G ru
%F FAA_2005_39_3_a2
A. A. Klyachin; V. M. Miklyukov. Isotropic Hypersurfaces and Minimal Extensions of Lipschitz Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 28-36. http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a2/

[1] Bim Dzh., Erlikh P., Globalnaya lorentseva geometriya, Mir, M., 1990 | MR

[2] Klyachin A. A., Miklyukov V. M., “Sledy funktsii s prostranstvennopodobnymi grafikami i zadacha o prodolzhenii pri ogranicheniyakh na gradient”, Matem. sb., 183:7 (1992), 49–64 | MR

[3] Grigoryeva E., Klyachin A., Miklyukov V., “Problem of functional extension and space-like surfaces in Minkowski space”, Z. Anal. Anwendungen, 21 (2002), 719–752 | DOI | MR | Zbl

[4] Bartnik R., Simon L., “Spacelike hypersurfaces with prescribed boundary values and mean curvature”, Commun. Math. Phys., 87 (1982/83), 131–152 | DOI | MR | Zbl

[5] Klyachin A. A., Miklyukov V. M., “Suschestvovanie reshenii s osobennostyami uravneniya maksimalnykh poverkhnostei v prostranstve Minkovskogo”, Matem. sb., 184:9 (1993), 103–124 | MR | Zbl

[6] Aronsson G., “Extension of functions satisfying Lipschitz conditions”, Ark. Mat., 6:28 (1967), 551–561 | DOI | MR | Zbl

[7] Jensen R., “Uniqueness of Lipschitz extension: minimizing the sup norm of the gradient”, Arch. Rational Mech. Anal., 123 (1993), 51–74 | DOI | MR | Zbl

[8] Crandall M. G., Evans L. C., Gariepy R. F., “Optimal Lipschitz extensions and the infinity Laplacian”, Calc. Var. Partial Differential Equations, 13:2 (2001), 123–139 | DOI | MR | Zbl

[9] Juutinen P., “Absolutely minimizing Lipschitz extensions on a metric space”, Ann. Acad. Sci. Fenn., Ser. AI Math., 27 (2002), 57–67 | MR | Zbl

[10] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[11] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[12] Bishop R. L., Krittenden R. Dzh., Geometriya mnogoobrazii, Mir, M., 1967 | MR | Zbl

[13] McShane E. J., “Extension of range of functions”, Bull. Amer. Math. Soc., 40 (1934), 837–842 | DOI | MR | Zbl

[14] Whitney H., “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | Zbl

[15] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. 2, Nauka, M., 1981 | MR