Isotropic Hypersurfaces and Minimal Extensions of Lipschitz Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 28-36
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence and uniqueness theorem for isotropic hypersurfaces with prescribed boundary in Lorentzian warped products is proved. The proof is based on minimal Lipschitz extensions of functions.
Mots-clés :
Lorentzian space
Keywords: isotropic surface, Lipschitz function, minimal extension of a Lipschitz function.
Keywords: isotropic surface, Lipschitz function, minimal extension of a Lipschitz function.
@article{FAA_2005_39_3_a2,
author = {A. A. Klyachin and V. M. Miklyukov},
title = {Isotropic {Hypersurfaces} and {Minimal} {Extensions} of {Lipschitz} {Functions}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {28--36},
publisher = {mathdoc},
volume = {39},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a2/}
}
TY - JOUR AU - A. A. Klyachin AU - V. M. Miklyukov TI - Isotropic Hypersurfaces and Minimal Extensions of Lipschitz Functions JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2005 SP - 28 EP - 36 VL - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a2/ LA - ru ID - FAA_2005_39_3_a2 ER -
A. A. Klyachin; V. M. Miklyukov. Isotropic Hypersurfaces and Minimal Extensions of Lipschitz Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 3, pp. 28-36. http://geodesic.mathdoc.fr/item/FAA_2005_39_3_a2/