Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2005_39_2_a9, author = {D. Romik}, title = {The {Number} of {Steps} in the {Robinson--Schensted} {Algorithm}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {82--86}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a9/} }
D. Romik. The Number of Steps in the Robinson--Schensted Algorithm. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 82-86. http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a9/
[1] Barvinok A., Fomin S., Adv. in Appl. Math., 18:3 (1997), 271–285 | DOI | MR | Zbl
[2] Bernstein D., The computational complexity of rules for the character table of $S_n$, arXiv.org: math/0309225 | MR
[3] Ivanov V., Olshanski G., Symmetric Functions 2001: Surveys of Developments and Perspectives, Proc. NATO Advanced Study Institute, ed. S. Fomin, Kluwer, 2002, 93–152 | DOI | MR
[4] Knut D., Iskusstvo programmirovaniya dlya EVM. T. 3. Sortirovka i poisk, Mir, M., 1978 | MR | Zbl
[5] Vershik A. M., Kerov S. V., DAN SSSR, 233:6 (1977), 1024–1027 | MR | Zbl
[6] Vershik A. M., Kerov S. V., Funkts. analiz i ego pril., 19:1 (1985), 25–38 | MR
[7] Logan B. F., Shepp L. A., Adv. Math., 26:2 (1977), 206–222 | DOI | MR | Zbl
[8] Stanley R. P., Enumerative Combinatorics, vol. 2, Cambridge University Press, 1999 | MR
[9] Stembridge J. R., Interaction of Combinatorics and Representation Theory,, MSJ Memoirs, 11, Math. Soc. Japan, Tokyo, 2001, 1–38 | MR | Zbl