The Number of Steps in the Robinson--Schensted Algorithm
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 82-86
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that a permutation $\sigma\in \mathcal{S}_n$ is chosen at random ($n$ is large) and the Robinson–Schensted algorithm is applied to compute the associated Young diagram. Then for almost all permutations the number of bumping operations performed by the algorithm is about $(128/27\pi^2)n^{3/2}$, and the number of comparison operations is about $(64/27\pi^2) n^{3/2}\log_2 n$.
Keywords:
Robinson–Schensted algorithm, analysis of algorithms, Plancherel measure.
Mots-clés : Young tableaux
Mots-clés : Young tableaux
@article{FAA_2005_39_2_a9,
author = {D. Romik},
title = {The {Number} of {Steps} in the {Robinson--Schensted} {Algorithm}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {82--86},
publisher = {mathdoc},
volume = {39},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a9/}
}
D. Romik. The Number of Steps in the Robinson--Schensted Algorithm. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 82-86. http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a9/