Ambarzumian's Theorem for a Sturm--Liouville Boundary Value Problem on a Star-Shaped Graph
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 78-81

Voir la notice de l'article provenant de la source Math-Net.Ru

Ambarzumian's theorem describes the exceptional case in which the spectrum of a single Sturm–Liouville problem on a finite interval uniquely determines the potential. In this paper, an analog of Ambarzumian's theorem is proved for the case of a Sturm–Liouville problem on a compact star-shaped graph. This case is also exceptional and corresponds to the Neumann boundary conditions at the pendant vertices and zero potentials on the edges.
Keywords: inverse problem, Neumann boundary conditions, normal eigenvalue, multiplicity of an eigenvalue, least eigenvalue, minimax principle.
@article{FAA_2005_39_2_a8,
     author = {V. N. Pyvovarchyk},
     title = {Ambarzumian's {Theorem} for a {Sturm--Liouville} {Boundary} {Value} {Problem} on a {Star-Shaped} {Graph}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {78--81},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a8/}
}
TY  - JOUR
AU  - V. N. Pyvovarchyk
TI  - Ambarzumian's Theorem for a Sturm--Liouville Boundary Value Problem on a Star-Shaped Graph
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 78
EP  - 81
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a8/
LA  - ru
ID  - FAA_2005_39_2_a8
ER  - 
%0 Journal Article
%A V. N. Pyvovarchyk
%T Ambarzumian's Theorem for a Sturm--Liouville Boundary Value Problem on a Star-Shaped Graph
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 78-81
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a8/
%G ru
%F FAA_2005_39_2_a8
V. N. Pyvovarchyk. Ambarzumian's Theorem for a Sturm--Liouville Boundary Value Problem on a Star-Shaped Graph. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 78-81. http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a8/