Ambarzumian's Theorem for a Sturm--Liouville Boundary Value Problem on a Star-Shaped Graph
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 78-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Ambarzumian's theorem describes the exceptional case in which the spectrum of a single Sturm–Liouville problem on a finite interval uniquely determines the potential. In this paper, an analog of Ambarzumian's theorem is proved for the case of a Sturm–Liouville problem on a compact star-shaped graph. This case is also exceptional and corresponds to the Neumann boundary conditions at the pendant vertices and zero potentials on the edges.
Keywords: inverse problem, Neumann boundary conditions, normal eigenvalue, multiplicity of an eigenvalue, least eigenvalue, minimax principle.
@article{FAA_2005_39_2_a8,
     author = {V. N. Pyvovarchyk},
     title = {Ambarzumian's {Theorem} for a {Sturm--Liouville} {Boundary} {Value} {Problem} on a {Star-Shaped} {Graph}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {78--81},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a8/}
}
TY  - JOUR
AU  - V. N. Pyvovarchyk
TI  - Ambarzumian's Theorem for a Sturm--Liouville Boundary Value Problem on a Star-Shaped Graph
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 78
EP  - 81
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a8/
LA  - ru
ID  - FAA_2005_39_2_a8
ER  - 
%0 Journal Article
%A V. N. Pyvovarchyk
%T Ambarzumian's Theorem for a Sturm--Liouville Boundary Value Problem on a Star-Shaped Graph
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 78-81
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a8/
%G ru
%F FAA_2005_39_2_a8
V. N. Pyvovarchyk. Ambarzumian's Theorem for a Sturm--Liouville Boundary Value Problem on a Star-Shaped Graph. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 78-81. http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a8/

[1] Ambarzumian V., Z. Phys., 53 (1929), 690–695 | DOI | Zbl

[2] Borg G., Acta Math., 78 (1946), 1–96 | DOI | MR | Zbl

[3] Levitan B. M., Gasymov M. G., UMN, 19:2 (1964), 3–63 | MR | Zbl

[4] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[5] Kuznetsov N. V., DAN SSSR, 146 (1962), 1259–1262 | MR | Zbl

[6] Harrel E. M., Amer. J. Math., 109:5 (1987), 787–795 | DOI | MR | Zbl

[7] Chern H.-H., Shen C.-L., Inverse Problems, 13 (1997), 15–18 | DOI | MR | Zbl

[8] Exner P., Lett. Math. Phys., 38 (1996), 313–320 | DOI | MR | Zbl

[9] Melnikov Yu., Pavlov B., J. Math. Phys., 42:3 (2001), 1202–1228 | DOI | MR | Zbl

[10] Gerasimenko N. I., Teor. matem. fiz., 75:2 (1988), 187–200 | MR

[11] Carlson R., Trans. Amer. Math. Soc., 351:10 (1999), 4069–4088 | DOI | MR | Zbl

[12] Pivovarchik V., SIAM J. Math. Anal., 32:4 (2000), 801–819 | DOI | MR | Zbl

[13] von Below J., Partial Differential Equations on Multistructures, Lect. Notes Pure Math., 219, M. Dekker, NY, 2001, 19–36 | MR | Zbl