Interpolation of Intersections Generated by a Linear Functional
Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 61-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X_0,X_1)$ be a Banach couple such that $X_0\cap X_1$ is dense in $X_0$ and $X_1$. By $(X_0,X_1)_{\theta,q}$, $0\theta1$, $1\le q\infty$, we denote the spaces of the real interpolation method. Let $\psi$ be a nonzero linear functional defined on some linear space $M\subset X_0+X_1$ and such that $\psi\in(X_0\cap X_1)^*$, and let $N=\operatorname{Ker}\psi$. We examine conditions under which the natural formula $$ (X_0\cap N,X_1\cap N)_{\theta,q}=(X_0,X_1)_{\theta,q}\cap N $$ is valid. In particular, the results obtained here imply those due to Ivanov and Kalton on the comparison of the interpolation spaces $(X_0,X_1)_{\theta,q}$ and $(N_0,X_1)_{\theta,q}$, where $\psi\in X_0^*$ and $N_0=\operatorname{Ker}\psi$. By way of application, we consider a problem, posed by Krugljak, Maligranda, and Persson, on the interpolation of intersections generated by an integral functional defined on weighted $L_p$-spaces.
Keywords: Banach space, subspace, Banach couple, subcouple, $\mathcal{K}$-functional, real interpolation method, weighted space.
Mots-clés : interpolation space
@article{FAA_2005_39_2_a4,
     author = {S. V. Astashkin},
     title = {Interpolation of {Intersections} {Generated} by a {Linear} {Functional}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {61--64},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a4/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - Interpolation of Intersections Generated by a Linear Functional
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2005
SP  - 61
EP  - 64
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a4/
LA  - ru
ID  - FAA_2005_39_2_a4
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T Interpolation of Intersections Generated by a Linear Functional
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2005
%P 61-64
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a4/
%G ru
%F FAA_2005_39_2_a4
S. V. Astashkin. Interpolation of Intersections Generated by a Linear Functional. Funkcionalʹnyj analiz i ego priloženiâ, Tome 39 (2005) no. 2, pp. 61-64. http://geodesic.mathdoc.fr/item/FAA_2005_39_2_a4/

[1] Krugljak N., Maligranda L., Persson L.-E., Ark. Mat., 37 (1999), 323–344 | DOI | MR | Zbl

[2] Ivanov S., Kalton N., Algebra i analiz, 13:2 (2001), 93–115 | MR

[3] Lions Zh. L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[4] Triebel H., Math. Nachr., 69 (1975), 57–60 | DOI | MR | Zbl

[5] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[6] Maligranda L., Suppl. Rend. Circ. Mat. Palermo, 10 (1985), 113–118 | MR | Zbl

[7] Wallsten R., Lect. Notes in Math., 1902, 1988, 410–419 | DOI | MR

[8] Pisier G., Pasific J. Math., 155 (1992), 341–368 | DOI | MR | Zbl

[9] Janson S., Ark. Math., 31 (1993), 307–338 | DOI | MR | Zbl

[10] Kislyakov S. V., Kuankhua Shu., Algebra i analiz, 8:4 (1996), 75–109 | MR | Zbl

[11] Löfström J., Interpolation of subspaces, Technical report No. 10, Univ. of Göteborg, 1997

[12] Astashkin S. V., J. Math. Math. Sci., 25:7 (2001), 451–465 | DOI | MR | Zbl

[13] Kaijser S., Sunehag P., “Interpolation subspaces and the unit problem”, Function Spaces, Interpolation Theory and Related Topics (Lund 2000), de Gruyter, Berlin, 2002, 345–353 | MR | Zbl

[14] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR